167 research outputs found

    Manipulating transgenes using a chromosome vector

    Get PDF
    Recent technological advances have enabled us to visualize the organization and dynamics of local chromatin structures; however, the comprehensive mechanisms by which chromatin organization modulates gene regulation are poorly understood. We designed a human artificial chromosome vector that allowed manipulation of transgenes using a method for delivering chromatin architectures into different cell lines from human to fish. This methodology enabled analysis of de novo construction, epigenetic maintenance and changes in the chromatin architecture of specific genes. Expressive and repressive architectures of human STAT3 were established from naked DNA in mouse embryonic stem cells and CHO cells, respectively. Delivery of STAT3 within repressive architecture to embryonic stem cells resulted in STAT3 activation, accompanied by changes in DNA methylation. This technology for manipulating a single gene with a specific chromatin architecture could be utilized in applied biology, including stem cell science and regeneration medicine

    Refined human artificial chromosome vectors for gene therapy and animal transgenesis

    Get PDF
    Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis

    Human RSPO1/R-spondin1 Is Expressed during Early Ovary Development and Augments β-Catenin Signaling

    Get PDF
    Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/β-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6–9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding β catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced β-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wild-type RSPO1 cDNA resulted in weak dose-dependent activation of a β-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding β-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of β-catenin signaling to oppose testis determination

    Konturni regulator za precizne slijedne sustave

    Get PDF
    This paper discusses the trajectory generation algorithm, contour error construction method and finally the contour controller design. In the trajectory generation algorithm combination of elliptical Fourier descriptors (EFD) and time based spline approximation (TBSA) is used to generate position, velocity and acceleration references. Contour error is constructed using transformation of trajectory tracking errors. Transformation is computationally efficient and requires only reference velocity information. Contour controller is designed using sliding mode control. Experiments are performed on planar linear motion stage and significant contour error reduction is observed.U članku se raspravlja o algoritmu za generiranje trajektorija, metodi za konstrukciju pogreške konture te o sintezi konturnog regulatora. U algoritum za generiranje trajektorija, korištena je kombinacija eliptičnih Fourierovih odrednika (EFD) i vremenske aproksimacije splajnovima (TBSA) za odre.ivanje referentnih vrijednosti položaja, brzine i ubrzanja. Pogreška konture je konstruirana korištenjem transformirane pogreške slije.enja trajektorije. Transformacija je računski efikasna i potrebna joj je samo informacija o referentnoj brzini. Konturni regulator je projektiran koristeći upravljanje u kliznim režimima. Provedeni su eksperimenti na linearnom slijednom sustavu i primijećena su znatna smanjenja pogreške konture

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). METHODS/DESIGN: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH2O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure 6430 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. DISCUSSION: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration metho

    Adaptive Pulse Width Control for Precise Positioning Under the Influence of Stiction and Coulomb Friction

    Get PDF
    For the robustness experiment, the friction is increased by increasing the sealing pressure. The PID control exhibits a large overshoot during the transient state, while the other controllers exhibit no overshoot, as shown in Figs. 4 and 5. In the SMC, errors are reduced very slowly and the steady-state error is relatively large as shown in Fig. 5. Settling times of the PID control, the TDC, and the TDSMC are 3.32 s, 2.96 s, and 1.94 s, respectively, as shown in Figs. 4{b) and 5(^). The PID control and the TDC perform very poorly and their settling times are increased by 90.8 and 105.6 percent, respectively, from their nominal values. On the other hand, the TDSMC performs very well and its settling time is increased only by 9 percent from the nominal value. Therefore, the TDSMC has the best performance robustness. Conclusions The TDSMC which is a combination of the TDC and the SMC is proposed for the system with unknown dynamics and disturbances. This method uses the idea of switching of the sliding mode control while reducing the chattering associated with it. Experiments on the position control of a DC motor system with stick-slip friction, were conducted to evaluate performances of the control algorithms. Experiments show that the TDSMC exhibits the best performance robustness and that the TDC and the TDSMC perform better than the PID control with an anti-windup filter and the integral sliding mode control. 227. Youcef-Touini, K., and Bobbet, J., 1991, "Stability of Uncertain Linear Systems With Time Delay," ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL, Vol. 113, pp. 558-567. Youcef-Toumi, K., and Ito, O., 1990, "A Time Delay Controller for Systems With Unknown Dynamics," ASME JOURNAL OF DYNAMIC SYSTEMS, MEASURE- MENT, AND CONTROL, Vol. 112, Youcef-Toumi, K., and Reddy, S., 1992, "Analysis of Linear Time Invariant Systems With Time Delay," ASME JOURNAL OF DYNAMIC SYSTEMS, MEASURE- MENT, AND CONTROL, Vol. 114, Youcef-Toumi, K., and Wu, S.-T., 1992, "Input/Output Linearization Using Time Delay Control," ASME JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL, Vol. 114, pp. 10-19

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Get PDF
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 ] HEALTH ]F2 ]2009 ]223175). The CIMBA data management and data analysis were supported by Cancer Research.UK grants 12292/A11174 and C1287/A10118. The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the US National Cancer Institute GAME ]ON Post ]GWAS Initiative (U19 ]CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). The cBio portal is developed and maintained by the Computational Biology Center at Memorial Sloan ] Kettering Cancer Center. SH is supported by an NHMRC Program Grant to GCT. Details of the funding of individual investigators and studies are provided in the Supplementary Note. This study made use of data generated by the Wellcome Trust Case Control consortium, funding for which was provided by the Wellcome Trust under award 076113. The results published here are, in part, based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancerhttp://dx.doi.org/10.1038/ng.3185This is the Author Accepted Manuscript of 'Identification of six new susceptibility loci for invasive epithelial ovarian cancer' which was published in Nature Genetics 47, 164–171 (2015) © Nature Publishing Group - content may only be used for academic research

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    Mammalian sex determination—insights from humans and mice

    Get PDF
    Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models
    corecore