169 research outputs found

    Molecular and genealogical characterization of the R1443X BRCA1 mutation in high-risk French-Canadian breast/ovarian cancer families

    Get PDF
    The Quebec population contains about six-million French Canadians, descended from the French settlers who colonized “Nouvelle-France” between 1608 and 1765. Although the relative genetic contribution of each of these founders is highly variable, altogether they account for the major part of the contemporary French-Canadian gene pool. This study was designed to analyze the role of this founder effect in the introduction and diffusion of the BRCA1 recurrent R1443X mutant allele. A highly conserved haplotype, observed in 18 French-Canadian families and generated using 17 microsatellite markers surrounding the BRCA1 locus, supports the fact that the R1443X mutation is a founder mutation in the Quebec population. We also performed haplotyping analysis of R1443X carriers on 19 other families from seven different nationalities; although the same alleles are shared for three markers surrounding the BRCA1 gene, distinct haplotypes were obtained in four families, suggesting multiple origins for the R1443X mutation. Ascending genealogies of the 18 French Canadian families and of controls were reconstructed on an average depth of 10 generations. We identified the founder couple with the highest probability of having introduced the mutation in the population. Based on the descending genealogy of this couple, we detected the presence of geographical concentration in the diffusion pattern of the mutation. This study demonstrates how molecular genetics and demogenetic analyses can complement each other to provide findings that could have an impact on public health. Moreover, this approach is certainly not unique to breast cancer genetics and could be used to understand other complex traits

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Prion Protein Is a Key Determinant of Alcohol Sensitivity through the Modulation of N-Methyl-D-Aspartate Receptor (NMDAR) Activity

    Get PDF
    The prion protein (PrP) is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP−/−) mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt) control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion) to ethanol inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP−/− mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP−/− mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP−/− mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions

    Variation in general supportive and preventive intensive care management of traumatic brain injury: a survey in 66 neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study

    Get PDF
    Abstract Background General supportive and preventive measures in the intensive care management of traumatic brain injury (TBI) aim to prevent or limit secondary brain injury and optimize recovery. The aim of this survey was to assess and quantify variation in perceptions on intensive care unit (ICU) management of patients with TBI in European neurotrauma centers. Methods We performed a survey as part of the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We analyzed 23 questions focused on: 1) circulatory and respiratory management; 2) fever control; 3) use of corticosteroids; 4) nutrition and glucose management; and 5) seizure prophylaxis and treatment. Results The survey was completed predominantly by intensivists (n = 33, 50%) and neurosurgeons (n = 23, 35%) from 66 centers (97% response rate). The most common cerebral perfusion pressure (CPP) target was > 60 mmHg (n = 39, 60%) and/or an individualized target (n = 25, 38%). To support CPP, crystalloid fluid loading (n = 60, 91%) was generally preferred over albumin (n = 15, 23%), and vasopressors (n = 63, 96%) over inotropes (n = 29, 44%). The most commonly reported target of partial pressure of carbon dioxide in arterial blood (PaCO2) was 36–40 mmHg (4.8–5.3 kPa) in case of controlled intracranial pressure (ICP) < 20 mmHg (n = 45, 69%) and PaCO2 target of 30–35 mmHg (4–4.7 kPa) in case of raised ICP (n = 40, 62%). Almost all respondents indicated to generally treat fever (n = 65, 98%) with paracetamol (n = 61, 92%) and/or external cooling (n = 49, 74%). Conventional glucose management (n = 43, 66%) was preferred over tight glycemic control (n = 18, 28%). More than half of the respondents indicated to aim for full caloric replacement within 7 days (n = 43, 66%) using enteral nutrition (n = 60, 92%). Indications for and duration of seizure prophylaxis varied, and levetiracetam was mostly reported as the agent of choice for both seizure prophylaxis (n = 32, 49%) and treatment (n = 40, 61%). Conclusions Practice preferences vary substantially regarding general supportive and preventive measures in TBI patients at ICUs of European neurotrauma centers. These results provide an opportunity for future comparative effectiveness research, since a more evidence-based uniformity in good practices in general ICU management could have a major impact on TBI outcome

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Neuronal algorithms for full information spectral analysis

    Get PDF
    International audienceIn Pattern Recognition the input items have to be identified under various transformations of their representations. Contemporary neural-networks research concentrates mostly on decision making systems, whereas the fundamental functions associated with the preprocessing of observations have often been ignored. This paper is a step toward theories that are expected to help the emergence of invariant-feature
    corecore