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Neuronal algorithms for full information spectral analysis.
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Jean-Louis Szàbo1, Christine Fuch2
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Abstract. In Pattern Recognition the in-

put items have to be identified under vari-

ous transformations of their representations.

Contemporary neural-networks research con-

centrates mostly on decision making sys-

tems, whereas the fundamental functions as-

sociated with the preprocessing of observa-

tions have often been ignored. This paper

is a step toward theories that are expected

to help the emergence of invariant-features.

key-words : data structure analysis, mod-
elling, feature extraction, fractal dimension.

1 Introduction

Pattern recognition and discrimination is about guess-
ing the unknown nature of an observation. This ob-
servation is just the collection of some numerical mea-
surements such as an image, time series, or a dig-
itized signature. More formally, an observation is a
d-dimensional vector x upon which the statistician,
the biologist, the physicist, the neuro-scientist design
a decision-making process.

Most pattern recognition research has been con-
centrated on complicated mechanisms for decision-
making processes (Bayes classifier, nearest neighbor
rule, . . . ) [?], which are not the purpose of this ar-
ticle. We present here some advanced mathematical
tools necessary for simplifying/solving them. We con-
centrate on realistic problems such as X−ray fluo-
rescence analysis and uranium enrichment measure-
ments. Although many classical approaches have been
proposed to formulate the decision-making process,
they are outside the scope of this publication.

2 The Learning Theory point of view

on feature extraction

Up to recent days, feature extraction has been mostly
considered a supervised process of (linear filters) map-
ping the original measurements into more effective
features so as to minimize a criterion, assuming that
the variables are already selected and given [?]. From
an experimental device, the physicist gets some mea-
surements, spoiled by noise and some determinist dis-
tortions. The “problem” is then to seek the “good”

values of a “number” of “interesting” parameters.
But, neither “good”, nor the “number”, nor “inter-
esting” are clearly defined notions. Frequently, the
physicist is unable to write the mathematical equa-
tions of the observed phenomenon. He hopes that
usual recipes called Fourier transform, deconvolution,
least squares,. . . will produce shining revelations[?].
Of course, these recipes are well-known and their
honorability well established, sometimes with a name
of a mathematician as a quality-label. Moreover, they
save time, which can give a major advance on the
other challengers. The author wants to underline thatin
order to undertake experimental data, anyone has to
consider

1. the equations first,

2. the exhaustive list of the hypotheses,

3. never letting the implicitely chosen method de-
fine the problem.

The reader will not see amount of mathematical equa-
tions, most of the mathematical background neces-
sary to make use of the contents of this article is in
[?]. Our basic knowledge and way of thinking is in
terms of probabilities, which provide ways to (1) in-
tuitively capture the most informative representation
of the signal, (2) validate hypotheses, (3) contradict
or not the experimental verdict.

In this context, the Learning Theory approach
offers a great potential for archieving optimal so-
lutions of complex real world problems, because it
deals with undefined knowledge which is in the mind
of the physicist before he carries out the experiment :
non-linear correlations, hidden dependencies,. . . The
latter suggestion is not a revelation, anyone can read
the proof of it in the recent litterature concerning
Learning Theory [?, ?, ?, ?]. In particular, it was
shown in Statistical Learning Theory that by taking
into account the size of sample one can obtain better
solutions to many problems than by using classical
methods [?, ?, ?] These questions are complex and
very problem-dependant, but we focuse on a specific
one : ill-conditioned problems when the physicist has
not a sufficient amount of experimental data.



3 Extremely ill-posed problems

Let us consider a physical problem with a set of p

samples {xi}
p
i=1

, x ∈ <N , N being the dimension of
these samples. The extremelly ill-posed problem oc-
curs when p � N . Suppose you want to undertake
the global information contained in each sample. If
the model is overly restrictive, it cannot “capture the
rule”, and, on the other hand, if it has a too high ca-
pacity, the model will likely be unable to generalize.
Learning Theory tells us that the most economical
model – in terms of free parameters – is often to
be the best, from the performance point of view [?].
In neural networks applications, one often faces such
singular learning problem where the data set consist
of a relatively small number of high-dimensional in-
put vectors. The basic idea is to transpose the prob-
lem from the high-dimensional input space to a low-
dimensional “signal space”. In this very case, the suc-
cess of the transformation depends on a weak hy-
pothese of strong dependencies between the compo-
nents of the input vector. But we have shown for toy-
problems [?] that this approach can be generalized to
other cases. In particular, we propose 3 variants of
feature extraction using Learning Theory concepts:

1. non-orthonormalized PCA (called Sanger’s rule)
[?],

2. sharing weights Hansen’s neural network [?],
3. VQP (Vector Quantization Projection) [?].

These schemes are unsupervised learning methods ;
for the pre-cited reasons, the results included may
varied for problem to an other.

4 Mathematical tools for ill-posed

problems

4.1 Non-orthonormalized PCA

A classical method for addressing the problem of lin-
ear feature extraction is the well-known statistical
tool, Principal Component Analysis (PCA), which
had been introduced first by Karhunen-Loeve. Two
main aspects capture our attention :

– first, the decorrelation of the covariance matrix
by PCA is equivalent to linear extraction of sta-
tistically independant features,

– second, PCA provides the orthonormal basis which
plays a important role in the data reconstruc-
tion/compression problem.

The Sanger’s rule (see Fig. 1) generalizes the stan-
dard PCA method based on the diagonalization of
covariance matrix by formulating the problem in a
more general way, i.e. by using a cost function. The

minimization of the criterion leads to the desired
PCA solution. It establishes the connection between
statistical properties and Learning Theory ideas.
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Fig. 1. A PCA network is a one-layer feed-forward neu-
ral network which is able to extract the eigencomponents
of the stream of input vectors. It can induce the emer-
gence of invariant-features. The non-linear caracteristic
of the activation functions explain the (asymptotic) sta-
bility and strength of the solution.

The weights of the Sanger network are the eigen-
vectors (non-orthonormalized basis) and the output
the projection of the learning example vector.

4.2 Sharing weights Hansen’s neural network

Discussing PCA, therefore, it is wise (and in this case
practical) to spend some time thinking a correct re-
formulation of the learning problem. Unreasonnable
results may come from a violation of the natural
physical a priori knowledge. This could be avoided
by using constraints or by changing the parameters
used to describe the phenomenon :

both strategies are combined with constrained weights
networks by considering the linear subspace spanned
by the actual inputs of the training set. The weights
vector w are restricted to fall within the signal space
S writing

w =

p∑

i=1

γixi.

with suitable parameters γi. Assuming the inputs are
linearly independent, the coefficients are unique and
computed iteratively using classical training scheme
like Backpropagation[?], based on cost function3, for

3 depending the nature of the statistical noise, i.e. pois-
sonian, gaussian, gamma, binomial [?].



Fig. 2. sharing weights Hansen’s network architecture (a
3-layered feed-forward perceptron with N inputs, and 3
neurons on the hidden layer).

example

E` =
1

p

p∑

i=1

(yi − f(xi, γi))
2, (1)

where yi is the desired output/prediction. This ap-
proach is hybrid in the sense the extraction of fea-
tures is supervised by a teacher (i.e. {xi, yi}

p
i=1

), but
the weights structure is decided in an unsupervised
way by the (linear combination of the) data. The
results in Table 1, in the next section, illustrate the
role of the signal space projection to facilitate predic-
tion with neural networks. The network architecture
is visualized in Fig. 2. The aim of current research
concern the interpretation of such weights.

4.3 VQP

By using VQP, we sacrifice deliberately linearity and
preserve the regularity (not obviously linear) of the
patterns, disregarding the noise, oscillations,. . . Keep
in mind that PCA is only linear4, and fails to re-
duce data in a non-linear way. VQP is a sort of self-
organizing mapper, as the famous Kohonen’s Self Or-
ganizing Maps, the output taking automatically the
relevant shape of the data. From a intuitive point
of view, VQP unfolds the data structure towards a
low dimensional space, which dimension is the (ex-
act and unfortunately hidden) number of degrees of
freedom of the observed phenomenon (see the appli-
cation on the “toy-problem” in Fig. 4). This dimen-
sion can be determined through fractal analysis of

4 linearity is rarely adapted to the shape of the paramet-
ric space to represent.

the data set (Fig. 3). In order to illustrate the per-
formance of VQP, we give the following application in
fluorescence−X , for the concentration prediction of
a mixture of components, i.e uranium and thorium.
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Fig. 3. Fractal dimension representation of sampling
from the γ-spectra familly (where(3) is put for Nitro-
gene-Chlorine γ−spectra, (2) is put for 235U γ−spectra
and (+) is put for KX−ray fluorescence spectra), com-
puted by using 2n(1 ≤ n ≤ 12) segments. The log− log
representation explain the real intrinsec dimension of the
spectral distribution.

5 Benchmark with real-word

problems

We shall give now two further examples of emergence
of specific filters.

5.1 KX−ray fluorescence analysis problem

They are applied here to the automatic analysis of
X−ray fluorescence spectra obtained with uranyl ni-
trate solutions irradiated by a collimated beam of
photons emitted by a sealed source of iridium 192Ir.
The method could allow the surveillance of uranium
quantities in nuclear fuel cycle in reprocessing plants
[?]. The equipment now in service in the plant mea-
sures reprocessing solutions with concentration ranges
of 1 to 400 g.l−1 for uranium and 1 to 40 g.l−1 for
thorium/plutonium. These discretized spectra were
used as training data. Fig 5 illustrates the dataset
projection produced using VQP and PCA. The in-
trinsic dimensionality of the problem seems to be 2,
which is precisely the number of unknowns.

5.2 Uranium-enrichment measurements

For further illustration of the ability of the VQP al-
gorithm we show in Fig. 6 the training set and gener-
alization set predictions. Traditional non-destructive



-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fig. 4. “Toy-problem” of (b) unfolding of the spherical
distribution (a). Notice that it is necessary to “cut” the
surface to allow the unfolding. The “dy−dx” diagram (c)
show that, locally, the topology is respected on contrast
with medium distances, where the dispersion is important
[?].
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Fig. 5. Real-world problem : prediction of uranium-tho-
rium concentration by KX−ray fluorescence analysis.
Fig. (b) depicts the caracteristics of the 50 samples train-
ing-set, which is projected in a non-linear manner on a
new mapping (a), repered by (φ1, φ2). (c) is the dx − dy

quality projection representation. The (3) is put for a
learning sample, the (+)for a test sample.



analysis during for uranium-enrichment measurement
involves the use of several X- and γ-ray peaks, mainly
in the 60 to 200 keV region. Most of these meth-
ods were developed more than 20 years ago, and are
based on measurements of the full energy peak at
185.7 keV ([?, ?, ?]). This approach requires calibra-
tion of the system and the measurement conditions
to remain constant. Other methods have been devel-
oped using several γ-ray peaks and calibration with
a limited number of peaks [?, ?].

Calibration procedures and matrix effects can be
avoided by focusing the spectra analysis on the KαX

region (which contains the main uranium compo-
nents) and by using infinitely thick samples. Such
samples sufficiently thick that any further increase
does not affect the γ−ray emissions.

The spectral processing of the KαX region in-
volves quantification of the photon emissions iden-
tified with 235U, 238U and X-ray fluorescence. This
approach requires well-defined data for the emissions
of photons, together with the characteristics and ge-
ometry of the detector.

Table 1. X−ray fluorescence analysis of Uranium-Tho-
rium. Training and test results. Neuronal learning has
been realised, in the very case of “VQPization” and
“’PCA-ization’ with a multilayer perceptron.

Feat. extract. training errora test errorb outputs

Hansen 9.3010−1 4.6510−1 4096

VQP 5.6910−2 2.8410−2 2

ACP (Sanger) 6.4810−2 5.1510−2 2

a Mean Square Error detailled in Eq. (1)
b idem.

6 Conclusions

Learning is one solution to ill-posed problems. With
such algorithms, no a priori law is introduced. The
data are just normalized for numerical reasons. Physi-
cist must just be aware of the asymptotic behaviour
of the learning algorithm and to the exhibit features,
even if it looks unreasonnable to the physicist. We
have investigated the possibility to invoke neural net-
works for the analysis of non-linear ill-posed prob-
lems in weights-sharing networks, networks for so-
called PCA and VQP. The proof is made it is advan-
tageous to re-express the training set without loss
of information. The present view is that recognition
must be based on features that are more/less invari-
ant with respect to different transformation.
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jected dataset are rotated with respect to a fixed point,
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Cognitive scientists can help the physicists to de-
cide between both supervised or unsupervised learn-
ing, between deterministic or probabilistic networks,
with a major motivation : preserving the maximum
amount of information in compression or prediction[?].

As an example, we have illustrated trough this
article a emerging idea[?]. The classical philosophy
usually considers two types of inference :deduction,
i.e. from general to particular, induction, i.e. from
particular to general. We have described a new con-
cept of inference : moving from particular to partic-



ular. Vapnik calls this type of inference transductive
inference.
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