63 research outputs found
Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe
The genetic architecture of type 2 diabetes
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes
Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.
OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
A genome-wide association search for type 2 diabetes genes in African Americans.
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations
Serosurveillance for livestock pathogens in free-ranging mule deer (Odocoileus hemionus).
Routine disease surveillance has been conducted for decades in mule deer (Odocoileus hemionus) in California for pathogens shared between wildlife and domestic ruminants that may have implications for the animal production industry and wildlife health. Deer sampled from 1990 to 2007 (n = 2,619) were tested for exposure to six pathogens: bluetongue virus (BTV), epizootic hemorrhagic disease virus (EHDV), bovine viral diarrhea virus (BVDV), Leptospira spp., Anaplasma spp. and Brucella spp. We evaluated the relationship between exposure to these pathogens and demographic risk factors to identify broad patterns in seroprevalence across a large temporal and spatial scale. The overall seroprevalence for the entire study period was 13.4% for BTV, 16.8% for EHDV, 17.1% for BVDV, 6.5% for Leptospira spp., 0.2% for Brucella spp., and 17% for Anaplasma spp. Antibodies against BTV and EHDV were most prevalent in the deer populations of southern California. Antibodies against Leptospira spp. and Anaplasma spp. were most prevalent in coastal and central northern California whereas antibodies against BVDV were most prevalent in central-eastern and northeastern California. The overall seroprevalence for Anaplasma spp. was slightly lower than detected in previous studies. North and central eastern California contains large tracts of federal land grazed by livestock; therefore, possible contact between deer and livestock could explain the high BVDV seroprevalence found in these areas. Findings from this study will help to establish baseline values for future comparisons of pathogen exposure in deer, inform on long-term trends in deer population health and provide relevant information on the distribution of diseases that are shared between wildlife and livestock
Adenoviral hemorrhagic disease in California mule deer, 1990-2014.
We reviewed case records from the California Animal Health and Food Safety (CAHFS) laboratory and the California Department of Fish and Wildlife (CDFW) spanning 25 years (1990-2014) for all deer accessions submitted to CAHFS for pathology and/or histopathology, with and without a diagnosis of adenoviral hemorrhagic disease (AHD), in order to determine the prevalence of AHD in California. We also examined spatial and temporal distribution, age, and mule deer subspecies in deer that died from AHD. Of 483 deer submitted to CAHFS for diagnostic testing in 1990-2014, 17.2% were diagnosed with confirmed AHD, and 26.5% were confirmed plus suspected cases of AHD. Columbian black-tailed deer ( Odocoileus hemionus columbianus), particularly fawns and juveniles, were most frequently affected. Deer adenovirus ( Odocoileus adenovirus 1; OdAdV-1) was detected by immunohistochemistry in archived CDFW formalin-fixed, paraffin-embedded tissues from deer that died in mortality events in 1981, 1983, and 1986-1987. OdAdV-1 is a common cause of hemorrhagic disease mortality events in California deer, and mortality as a result of AHD is documented as early as 1981
Seroprevalence of BVDV by deer assessment unit (area).
<p>Ranges of average bovine viral diarrhea virus (BVDV) seroprevalences among deer sampled between 1990 and 2007 in 11 deer assessment units (areas) in California. The distribution of public rangeland and cattle grazing land is also shown. Source: US Forest Service (<a href="http://www.fs.fed.us/r5/rsl/clearinghouse/gis-download.shtml" target="_blank">http://www.fs.fed.us/r5/rsl/clearinghouse/gis-download.shtml</a>).</p
Unadjusted prevalence (%) by year, age, sex and subspecies of serologic positive status for BTV, EHDV, BVDV, <i>Leptospira</i> spp., <i>Anaplasma</i> spp., and <i>Brucella</i> spp. among deer sampled between 1990 and 2007 in 11 deer assessment units (areas) in California.
<p>Prevalence is shown as % (number samples positive/number samples tested).</p
Multivariate logistic regression model for exposure to bovine viral diarrhea virus (BVDV) and <i>Anaplasma</i> spp. among deer sampled at 11 deer assessment units (areas) in California between 1990 and 2007.
<p>0 = no samples were seropositive in this category.</p><p>ref = reference category.</p
Seroprevalence of Toxoplasma gondii in American Free-Ranging or Captive Pumas (Felis concolor) and Bobcats (Lynx rufus)
Toxoplasma gondii is a major zoonotic agent infecting a wide range of mammals, including wild felids. Like domestic cats, wild felids are involved in the complete infective cycle of T. gondii, as they can host in their gastrointestinal tract sexually mature parasites and shed infective oocysts in their feces. In order to evaluate the importance of this wildlife reservoir, 438 serum samples collected between 1984 and 1999 from 438 pumas (Felis concolor) and from 58 bobcats (Lynx rufus) from North America, Central America and South America were screened for antibodies to T. gondii. The overall prevalence of T. gondii antibodies was 22.4% in pumas and 51.7% in bobcats, with regional variations. Adults were more likely to be seropositive than juveniles and kittens (prevalence ratio (PR)=2.15; 95% confidence interval (CI)=1.15, 4.04). In the US, pumas from the southwestern states (Arizona, California and New Mexico) were more likely to be seropositive for T. gondii (PR=2.61; 95% CI=1.32–5.18) than pumas from the northwestern and mountain states (Colorado, Idaho, Oregon, Utah and Wyoming). Male pumas from the US were more likely to be seropositive than females (PR=2.08; 95% CI=1.11–3.92), whereas female pumas from Mexico, Central America and South America were more likely to be seropositive than female pumas from Canada and the US (PR=2.49; 95% CI=1.09–5.69). Captive pumas were also more likely to be seropositive (21.7%, 29/92) for T. gondii than free-ranging animals (19.9%, 69/346) (PR=1.85; 95% CI=1.06, 3.17)
- …