322 research outputs found
XCDCC: Core Excitation in the Breakup of Exotic Nuclei
The eXtended Continuum Discretized Coupled Channel (XCDCC) method is
developed to treat reactions where core degrees of freedom play a role. The
projectile is treated as a multi-configuration coupled channels system
generated from a valence particle coupled to a deformed core which is allowed
to excite. The coupled channels initial state breaks up into a coupled channels
continuum which is discretized into bins, similarly to the original CDCC
method. Core collective degrees of freedom are also included in the interaction
of the core and the target, so that dynamical effects can occur during the
reaction. We present results for the breakup of C=C+n and
Be=Be+n on Be. Results show that the total cross section
increases with core deformation. More importantly, the relative percentage of
the various components of the initial state are modified during the reaction
process through dynamical effects. This implies that comparing spectroscopic
factors from structure calculations with experimental cross sections requires
more detailed reaction models that go beyond the single particle model.Comment: 14 pages, revtex, submitted to Phys Rev
B(E1) Strengths from Coulomb Excitation of 11Be
The (E1;) strength for Be has been extracted from
intermediate energy Coulomb excitation measurements, over a range of beam
energies using a new reaction model, the extended continuum discretized coupled
channels (XCDCC) method. In addition, a measurement of the excitation cross
section for Be+Pb at 38.6 MeV/nucleon is reported. The (E1)
strength of 0.105(12) efm derived from this measurement is consistent
with those made previously at 60 and 64 MeV/nucleon, i n contrast to an
anomalously low result obtained at 43 MeV/nucleon. By coupling a
multi-configuration description of the projectile structure with realistic
reaction theory, the XCDCC model provides for the first time a fully quantum
mechanical description of Coulomb excitation. The XCDCC calculations reveal
that the excitation process involves significant contributions from nuclear,
continuum, and higher-order effects. An analysis of the present and two earlier
intermediate energy measurements yields a combined B(E1) strength of 0.105(7)
efm. This value is in good agreement with the value deduced
independently from the lifetime of the state in Be, and has a
comparable p recision.Comment: 5 pages, 2 figures, accepted for publication in Phys. Lett.
Scaling and Interference in the Dissociation of Halo Nuclei
The dissociation of halo nuclei through their collision with light and heavy
targets is considered within the Continuum Discretized Coupled Channels theory.
We study the one-proton halo nucleus B and the one-neutron halo nucleus
Be, as well as the more normal Be. The procedure previously employed
to extract the Coulomb dissociation cross section by subtracting the nuclear
one is critically assessed, and the scaling law usually assumed for the target
mass dependence of the nuclear breakup cross section is also tested. It is
found that the nuclear breakup cross section for these very loosely bound
nuclei does indeed behave as . However, it does not have the
geometrically inspired form of a circular ring which seems to be the case for
normal nuclei such as Be. We find further that we cannot ignore
Coulomb-nuclear interference effects, which may be constructive or destructive
in nature, and so the errors in previously extracted B(E1) using the
subtraction procedure are almost certainly underestimated.Comment: version submitted to PRL + minor text change
Breakup reaction models for two- and three-cluster projectiles
Breakup reactions are one of the main tools for the study of exotic nuclei,
and in particular of their continuum. In order to get valuable information from
measurements, a precise reaction model coupled to a fair description of the
projectile is needed. We assume that the projectile initially possesses a
cluster structure, which is revealed by the dissociation process. This
structure is described by a few-body Hamiltonian involving effective forces
between the clusters. Within this assumption, we review various reaction
models. In semiclassical models, the projectile-target relative motion is
described by a classical trajectory and the reaction properties are deduced by
solving a time-dependent Schroedinger equation. We then describe the principle
and variants of the eikonal approximation: the dynamical eikonal approximation,
the standard eikonal approximation, and a corrected version avoiding Coulomb
divergence. Finally, we present the continuum-discretized coupled-channel
method (CDCC), in which the Schroedinger equation is solved with the projectile
continuum approximated by square-integrable states. These models are first
illustrated by applications to two-cluster projectiles for studies of nuclei
far from stability and of reactions useful in astrophysics. Recent extensions
to three-cluster projectiles, like two-neutron halo nuclei, are then presented
and discussed. We end this review with some views of the future in
breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be
published as a volume of "Lecture Notes in Physics" (Springer
Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV
A search for a Higgs boson decaying into two photons is described. The
analysis is performed using a dataset recorded by the CMS experiment at the LHC
from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an
integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross
section of the standard model Higgs boson decaying to two photons. The expected
exclusion limit at 95% confidence level is between 1.4 and 2.4 times the
standard model cross section in the mass range between 110 and 150 GeV. The
analysis of the data excludes, at 95% confidence level, the standard model
Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The
largest excess of events above the expected standard model background is
observed for a Higgs boson mass hypothesis of 124 GeV with a local significance
of 3.1 sigma. The global significance of observing an excess with a local
significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is
estimated to be 1.8 sigma. More data are required to ascertain the origin of
this excess.Comment: Submitted to Physics Letters
Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV
Isolated photon production is measured in proton-proton and lead-lead
collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the
pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80
GeV with the CMS detector at the LHC. The measured ET spectra are found to be
in good agreement with next-to-leading-order perturbative QCD predictions. The
ratio of PbPb to pp isolated photon ET-differential yields, scaled by the
number of incoherent nucleon-nucleon collisions, is consistent with unity for
all PbPb reaction centralities.Comment: Submitted to Physics Letters
Kinetics of epsilon antitoxin antibodies in different strategies for active immunization of lambs against enterotoxaemia
Enterotoxaemia, a common disease that affects domestic small ruminants, is mainly caused by the epsilon toxin of Clostridium perfringens type D. The present study tested four distinct immunization protocols to evaluate humoral response in lambs, a progeny of non-vaccinated sheep during gestation. Twenty-four lambs were randomly allocated into four groups according to age (7, 15, 30 and 45 days), receiving the first dose of epsilon toxoid commercial vaccine against clostridiosis with booster after 30 days post vaccination. Indirect ELISA was performed after the first vaccine dose and booster to evaluate the immune response of the lambs. Results showed that for the four protocols tested all lambs presented serum title considered protective (≥0.2UI/ml epsilon antitoxin antibodies) and also showed that the anticipation of primovaccination of lambs against enterotoxaemia conferred serum title considered protective allowing the optimization of mass vaccination of lambs
Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology
notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations
- …