7 research outputs found

    Automatic extraction of informal topics from online suicidal ideation

    Full text link
    Abstract Background Suicide is an alarming public health problem accounting for a considerable number of deaths each year worldwide. Many more individuals contemplate suicide. Understanding the attributes, characteristics, and exposures correlated with suicide remains an urgent and significant problem. As social networking sites have become more common, users have adopted these sites to talk about intensely personal topics, among them their thoughts about suicide. Such data has previously been evaluated by analyzing the language features of social media posts and using factors derived by domain experts to identify at-risk users. Results In this work, we automatically extract informal latent recurring topics of suicidal ideation found in social media posts. Our evaluation demonstrates that we are able to automatically reproduce many of the expertly determined risk factors for suicide. Moreover, we identify many informal latent topics related to suicide ideation such as concerns over health, work, self-image, and financial issues. Conclusions These informal topics topics can be more specific or more general. Some of our topics express meaningful ideas not contained in the risk factors and some risk factors do not have complimentary latent topics. In short, our analysis of the latent topics extracted from social media containing suicidal ideations suggests that users of these systems express ideas that are complementary to the topics defined by experts but differ in their scope, focus, and precision of language.https://deepblue.lib.umich.edu/bitstream/2027.42/144214/1/12859_2018_Article_2197.pd

    Socioeconomic causes of the recent rise in death rates for 15–24-yr-olds

    No full text

    The Opioid-overdose Reduction Continuum of Care Approach (ORCCA): Evidence-based practices in the HEALing Communities Study

    No full text
    corecore