22 research outputs found

    The optically-powerful quasar E1821+643 is associated with a 300-kpc scale FRI radio structure

    Get PDF
    We present a deep image of the optically-powerful quasar E1821+643 at 18cm made with the Very Large Array (VLA). This image reveals radio emission, over 280 kpc in extent, elongated way beyond the quasar's host galaxy. Its radio structure has decreasing surface brightness with increasing distance from the bright core, characteristic of FRI sources (Fanaroff & Riley 1974). Its radio luminosity at 5GHz falls in the classification for `radio-quiet' quasars (it is only 10^23.9 W/Hz/sr; see e.g. Kellermann et al 1994). Its radio luminosity at 151MHz (which is 10^25.3 W/Hz/sr) is at the transition luminosity observed to separate FRIs and FRIIs. Hitherto, no optically-powerful quasar had been found to have a conventional FRI radio structure. For searches at low-frequency this is unsurprising given current sensitivity and plausible radio spectral indices for radio-quiet quasars. We demonstrate the inevitability of the extent of any FRqI radio structures being seriously under-estimated by existing targetted follow-up observations of other optically-selected quasars, which are typically short exposures of z > 0.3 objects, and discuss the implications for the purported radio bimodality in quasars. The nature of the inner arcsec-scale jet in E1821+643, together with its large-scale radio structure, suggest that the jet-axis in this quasar is precessing (cf. Galactic jet sources such as SS433). A possible explanation for this is that its central engine is a binary whose black holes have yet to coalesce. The ubiquity of precession in `radio-quiet' quasars, perhaps as a means of reducing the observable radio luminosity expected in highly-accreting systems, remains to be established.Comment: Accepted by ApJ Letters; higher quality versions of figures available at http://www-astro.physics.ox.ac.uk/~km

    The spectra and energies of classical double radio lobes

    Get PDF
    We compare two temporal properties of classical double radio sources: i) radiative lifetimes of synchrotron-emitting particles and ii) dynamical source ages. We discuss how these can be quite discrepant from one another, rendering use of the traditional spectral ageing method inappropriate: we contend that spectral ages give meaningful estimates of dynamical ages only when these ages are << 10^7 years. In juxtaposing the fleeting radiative lifetimes with source ages which are significantly longer, a refinement of the paradigm for radio source evolution is required. The changing spectra along lobes are explained, not predominantly by synchrotron ageing but, by gentle gradients in a magnetic field mediated by a low-gamma matrix which illuminates an energy-distribution of particles, controlled largely by classical synchrotron loss in the high magnetic field of the hotspot. The energy in the particles is an order of magnitude higher than that inferred from the minimum-energy estimate, implying that the jet-power is of the same order as the accretion luminosity produced by the quasar central engine. This refined paradigm points to a resolution of the findings of Rudnick et al (1994) and Katz-Stone & Rudnick (1994) that both the Jaffe-Perola and Kardashev-Pacholczyk model spectra are invariably poor descriptions of the curved spectral shape of lobe emission, and indeed that for Cygnus A all regions of the lobes are characterised by a `universal spectrum'. [abridged]Comment: LaTeX, 4 figures. To appear in A

    Expansion and functional diversification of a leucyl aminopeptidase family that encodes the major protein constituents of Drosophila sperm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolutionary diversification of gene families through gene creation (and loss) is a dynamic process believed to be critical to the evolution of functional novelty. Previous identification of a closely related family of eight annotated metalloprotease genes of the M17 Merops family in the <it>Drosophila </it>sperm proteome (termed, Sperm-LeucylAminoPeptidases, S-LAPs 1-8) led us to hypothesize that this gene family may have experienced such a diversification during insect evolution.</p> <p>Results</p> <p>To assess putative functional activities of S-LAPs, we (i) demonstrated that all S-LAPs are specifically expressed in the testis, (ii) confirmed their presence in sperm by two-dimensional gel electrophoresis and mass spectrometry, (iii) determined that they represent a major portion of the total protein in sperm and (iv) identified aminopeptidase enzymatic activity in sperm extracts using LAP-specific substrates. Functionally significant divergence at the canonical M17 active site indicates that the largest phylogenetic group of S-LAPs lost catalytic activity and likely acquired novel, as yet undetermined, functions in sperm prior to the expansion of the gene family.</p> <p>Conclusions</p> <p>Comparative genomic and phylogenetic analyses revealed the dramatic expansion of the S-LAP gene family during <it>Drosophila </it>evolution and copy number heterogeneity in the genomes of related insects. This finding, in conjunction with the loss of catalytic activity and potential neofunctionalization amongst some family members, extends empirical support for pervasive "revolving door" turnover in the evolution of reproductive gene family composition and function.</p

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps : Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting similar to 2000 PGCCs in J = 1-0 transitions of CO isotopologues and similar to 1000 PGCCs in 850 mu m continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are similar to 6200 M-circle dot, similar to 12 pc, and similar to 500 M-circle dot pc(-1), respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (beta) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.Peer reviewe

    Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements

    Get PDF
    We present the results of dust emission polarization measurements of Ophiuchus-B (Oph-B) carried out using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera with its associated polarimeter (POL-2) on the James Clerk Maxwell Telescope in Hawaii. This work is part of the B-fields in Star-forming Region Observations survey initiated to understand the role of magnetic fields in star formation for nearby star-forming molecular clouds. We present a first look at the geometry and strength of magnetic fields in Oph-B. The field geometry is traced over ~0.2 pc, with clear detection of both of the sub-clumps of Oph-B. The field pattern appears significantly disordered in sub-clump Oph-B1. The field geometry in Oph-B2 is more ordered, with a tendency to be along the major axis of the clump, parallel to the filamentary structure within which it lies. The degree of polarization decreases systematically toward the dense core material in the two sub-clumps. The field lines in the lower density material along the periphery are smoothly joined to the large-scale magnetic fields probed by NIR polarization observations. We estimated a magnetic field strength of 630 ± 410 μG in the Oph-B2 sub-clump using a Davis–Chandrasekhar–Fermi analysis. With this magnetic field strength, we find a mass-to-flux ratio λ = 1.6 ± 1.1, which suggests that the Oph-B2 clump is slightly magnetically supercritical

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Exploring the infrared/radio correlation at high redshift

    No full text
    We have analysed the 24um properties of a radio-selected sample in the Subaru-XMM/Newton Deep Field in order to explore the behaviour of the FIR/radio relation at high redshifts. Statistically, the correlation is described by q24, the ratio between the observed flux densities at 24um and 1.4GHz, respectively. Using 24um data results in considerably more scatter in the correlation than previous work using data at 60-70um. Nevertheless, we do observe a steady correlation as a function of redshift, up to z~3.5, suggesting its validity back to primeval times. We find q24 = 0.30 +/- 0.56 for the observed and q24 = 0.71 +/- 0.47 for the k-corrected radio sample, based on sources with 300uJy < S(1.4GHz) < 3.2mJy and 24um detections. A suitable k-correction given by a M82-like mid-IR template suggests no extreme silicate absorption in the bulk of our radio sample. Using thresholds in q24 to identify radio-excess sources, we have been able to characterise the transition from radio-loud AGN to star-forming galaxies and radio-quiet AGN at faint (<1mJy) radio flux densities. Our results are in broad agreement with previous studies which show a dominant radio-loud AGN population at >1mJy. The rest-frame U-B colours of the expected radio-excess population have redder distribution than those that follow the correlation. This is therefore a promising way to select obscured Type-2 AGN, with a radio loud nature, missed by deep X-ray observations. Spectroscopic follow-up of these sources is required to fully test this method.Comment: The paper contains 7 figures and 1 table. In press at MNRA

    The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE

    Get PDF
    A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
    corecore