80 research outputs found

    Outcome of a psychosocial health promotion intervention aimed at improving physical health and reducing alcohol use in patients with schizophrenia and psychotic disorders (MINT)

    Get PDF
    Background: Life expectancy is reduced by 19 years in men and 17 in women with psychosis in Sweden, largely due to cardiovascular disease. Aim: Assess whether a psychosocial health promotion intervention improves cardiometabolic risk factors, quality of life, and severity of illness in patients with psychotic disorders more than treatment as usual. Methods: A pragmatic intervention trial testing a manual-based multi-component health promotion intervention targeting patients with psychosis. The Swedish intervention was adapted from IMPaCT therapy, a health-promotion program based on motivational interviewing and cognitive behavioral therapy, designed to be incorporated into routine care. The intervention group consisted of 119 patients and a control group of 570 patients from specialized psychosis departments. Outcome variables were assessed 6 months before intervention during the run-in period, again at the start of intervention, and 12 months after the intervention began. The control group received treatment as usual. Results: The intervention had no significant effect on any of the outcome variables. However, BMI, waist circumference, systolic BP, heart rate, HbA1c, general health, and Clinical Global Impressions Scale score improved significantly during the run-in period before the start of the active intervention (observer effect). The multi-component design meant that treatment effects could only be calculated for the intervention as a whole. Conclusion: The results of the intervention are similar to those of the U.K. IMPaCT study, in which the modular health-promotion intervention had little effect on cardiovascular risk indicators. However, in the current study, the run-in period had a positive effect on cardiometabolic risk factors

    Oxygen-regulated transcription factors and their role in pulmonary disease

    Get PDF
    The transcription factors nuclear factor interleukin-6 (NF-IL6), early growth response-1 (EGR-1) and hypoxia-inducible factor-1 (HIF-1) have important roles in the molecular pathophysiology of hypoxia-associated pulmonary disease. NF-IL6 controls the production of interleukin (IL)-6 in vascular endothelial cells, which may have anti-inflammatory activity by counteracting effects of IL-1 and IL-8. EGR-1 controls the production of tissue factor by macrophages, which triggers fibrin deposition in the pulmonary vasculature. HIF-1 activates the expression of the vasoconstrictor endothelin-1 in vascular endothelial cells. Angiotensin II induces HIF-1 expression and hypertrophy of pulmonary arterial smooth muscle cells. HIF-1 might therefore have multiple roles in the pathogenesis of pulmonary vascular remodeling

    Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation

    Get PDF
    Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs.In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay.EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control.These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH

    ProLIF: a quantitative assay for investigating integrin cytoplasmic protein interactions and synergistic membrane effects on proteoliposomes

    Get PDF
    Integrin transmembrane heterodimeric receptors control a wide range of biological interactions by triggering the assembly of large multiprotein complexes at their cytoplasmic interface. A diverse set of methods have been used to investigate cytoplasmic interactions between integrins and intracellular proteins. These predominantly consist of peptide-based pull-downs and biochemical immuno- isolations from detergent-solubilized cell lysates. However, quantitative methods to probe integrin- protein interactions in a more biologically relevant context where the integrin is embedded within a lipid bilayer have been lacking. Here we describe a technique called ProLIF (Protein-Liposome Interactions by Flow cytometry) to reconstitute recombinant integrin transmembrane domain (TMD) and cytoplasmic tail (CT) fragments on liposomes as individual ? or ? subunits or as ?? heterodimers and, using flow cytometry, to rapidly and quantitatively measure protein interactions with these membrane-embedded integrins. Importantly, the assay can analyse binding of fluorescent proteins directly from cell lysates without further purification steps. By combining integrins with membrane lipids to generate proteoliposomes, the effects of membrane composition such as PI(4,5)P2 presence on protein recruitment to the integrin CTs can be analyzed. ProLIF requires no specific instrumentation, apart from a standard flow cytometer and can be applied to measure a broad range of membrane-dependent protein-protein interactions with the potential for high-throughput/multiplex analyses

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling

    Get PDF
    Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our\ua0identification of retriever establishes a major endosomal retrieval and recycling pathway

    Towards an Alaska Wilderness System: Some Considerations

    No full text
    The State of Alask
    corecore