11 research outputs found
Differential expression of skeletal muscle genes following administration of clenbuterol to exercised horses.
BackgroundClenbuterol, a beta2-adrenergic receptor agonist, is used therapeutically to treat respiratory conditions in the horse. However, by virtue of its mechanism of action it has been suggested that clenbuterol may also have repartitioning affects in horses and as such the potential to affect performance. Clenbuterol decreases the percent fat and increases fat-free mass following high dose administration in combination with intense exercise in horses. In the current study, microarray analysis and real-time PCR were used to study the temporal effects of low and high dose chronic clenbuterol administration on differential gene expression of several skeletal muscle myosin heavy chains, genes involved in lipid metabolism and the β2-adrenergic receptor. The effect of clenbuterol administration on differential gene expression has not been previously reported in the horse, therefore the primary objective of the current study was to describe clenbuterol-induced temporal changes in gene expression following chronic oral administration of clenbuterol at both high and low doses.ResultsSteady state clenbuterol concentrations were achieved at approximately 50 h post administration of the first dose for the low dose regimen and at approximately 18-19 days (10 days post administration of 3.2 μg/kg) for the escalating dosing regimen. Following chronic administration of the low dose (0.8 μg/kg BID) of clenbuterol, a total of 114 genes were differentially expressed, however, none of these changes were found to be significant following FDR adjustment of the p-values. A total of 7,093 genes were differentially expressed with 3,623 genes up regulated and 3,470 genes down regulated following chronic high dose administration. Of the genes selected for further study by real-time PCR, down-regulation of genes encoding myosin heavy chains 2 and 7, steroyl CoA desaturase and the β2-adrenergic receptor were noted. For most genes, expression levels returned towards baseline levels following cessation of drug administration.ConclusionThis study showed no evidence of modified gene expression following chronic low dose administration of clenbuterol to horses. However, following chronic administration of high doses of clenbuterol alterations were noted in transcripts encoding various myosin heavy chains, lipid metabolizing enzymes and the β2-adrenergic receptor
Dark Matter in Low Surface Brightness Galaxies
Low Surface Brightness (LSB) galaxies form a large population of disc
galaxies that extend the Hubble sequence towards extreme late-types. They are
only slowly evolving, and still in an early evolutionary state. The
Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB
galaxies are very dark-matter dominated with respect to ``normal'' high surface
brightness (HSB) galaxies. Mass models derived from the rotation curves of LSB
and HSB galaxies show that LSB galaxies inhabit less dense and more extended
halos. Mass density, which changes with surface brightness, is as important in
determining the evolution of a galaxy as total mass is.Comment: 8 pages, uses paspconf.sty. To be published in ``Dark and Visible
Matter in Galaxies and Cosmological Implications'', Sesto Pusteria, Italy,
2-5 July, 1996,PASP Conference Series, eds M.Persic and P.Salucci. Also
available at http://www.astro.rug.nl/~blok/lsb.htm
Galaxy Formation Theory
We review the current theory of how galaxies form within the cosmological
framework provided by the cold dark matter paradigm for structure formation.
Beginning with the pre-galactic evolution of baryonic material we describe the
analytical and numerical understanding of how baryons condense into galaxies,
what determines the structure of those galaxies and how internal and external
processes (including star formation, merging, active galactic nuclei etc.)
determine their gross properties and evolution. Throughout, we highlight
successes and failings of current galaxy formation theory. We include a review
of computational implementations of galaxy formation theory and assess their
ability to provide reliable modelling of this complex phenomenon. We finish
with a discussion of several "hot topics" in contemporary galaxy formation
theory and assess future directions for this field.Comment: 58 pages, to appear in Physics Reports. This version includes minor
corrections and a handful of additional reference
Recommended from our members
Differential expression of skeletal muscle genes following administration of clenbuterol to exercised horses.
BackgroundClenbuterol, a beta2-adrenergic receptor agonist, is used therapeutically to treat respiratory conditions in the horse. However, by virtue of its mechanism of action it has been suggested that clenbuterol may also have repartitioning affects in horses and as such the potential to affect performance. Clenbuterol decreases the percent fat and increases fat-free mass following high dose administration in combination with intense exercise in horses. In the current study, microarray analysis and real-time PCR were used to study the temporal effects of low and high dose chronic clenbuterol administration on differential gene expression of several skeletal muscle myosin heavy chains, genes involved in lipid metabolism and the β2-adrenergic receptor. The effect of clenbuterol administration on differential gene expression has not been previously reported in the horse, therefore the primary objective of the current study was to describe clenbuterol-induced temporal changes in gene expression following chronic oral administration of clenbuterol at both high and low doses.ResultsSteady state clenbuterol concentrations were achieved at approximately 50 h post administration of the first dose for the low dose regimen and at approximately 18-19 days (10 days post administration of 3.2 μg/kg) for the escalating dosing regimen. Following chronic administration of the low dose (0.8 μg/kg BID) of clenbuterol, a total of 114 genes were differentially expressed, however, none of these changes were found to be significant following FDR adjustment of the p-values. A total of 7,093 genes were differentially expressed with 3,623 genes up regulated and 3,470 genes down regulated following chronic high dose administration. Of the genes selected for further study by real-time PCR, down-regulation of genes encoding myosin heavy chains 2 and 7, steroyl CoA desaturase and the β2-adrenergic receptor were noted. For most genes, expression levels returned towards baseline levels following cessation of drug administration.ConclusionThis study showed no evidence of modified gene expression following chronic low dose administration of clenbuterol to horses. However, following chronic administration of high doses of clenbuterol alterations were noted in transcripts encoding various myosin heavy chains, lipid metabolizing enzymes and the β2-adrenergic receptor