27 research outputs found
Age at first birth in women is genetically associated with increased risk of schizophrenia
Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation
Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Not Available
Not AvailableMotivation: Simple sequence repeats (SSRs) are abundant across genomes. However, the significance of SSRs in organellar genomes of rice has not been completely understood. The availability of organellar genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions.
Results: We have analyzed SSRs in mitochondrial and chloroplast genomes of rice. We identified 2528 SSRs in the mitochondrial genome and average 870 SSRs in the chloroplast genomes. About 8.7% of the mitochondrial and 27.5% of the chloroplast SSRs were observed in the genic region. Dinucleotides were the most abundant repeats in genic and intergenic regions of the mitochondrial genome while mononucleotides were predominant in the chloroplast genomes. The rps and nad gene clusters of mitochondria had the maximum repeats, while the rpo and ndh gene clusters of chloroplast had the maximum repeats. We identified SSRs in both organellar genomes and validated in different cultivars and species.Not Availabl
Not Available
Not AvailableThe effect of thermal processing on the biochemical constituents of green mussel (Pernaviridis) in brine was investigated. Depurated mussel samples were thermal processed in tin-free steel cans (TFS) at F0 8.43. The time temperature data was collected during heat processing using EVAL data recorder and heat penetration characteristics were determined using formula method. The total process time was 27.48 min and the processed cans were found to be commercially sterile. The mineral composition of processed mussel was significantly higher than raw samples. The instrumental texture analysis indicated that product become soft after thermal processing.The thermal process led to a significant decrease in total amino acid and fatty acid content of the samples. Even though the samples showed a decrease in amino acid and fatty acid composition after thermal processing, the mussel meat was nutritionally well balanced with respect to essential anino acids and fatty acids.Hence the product can be considered as a food source with high quality protein and fat to fulfil consumer’s requirements.Based on sensory analysis, the processed products were found acceptable during the study periodNot Availabl
Impact of elevated CO2 on growth, physiology, yield, and quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish
Tomato meets the dietary nutrient and antioxidant requirements of diverse populations. Being a C3 crop and an important vegetable, it is likely to be influenced by increased CO2 concentrations under climate change situation. This study was conducted to investigate the effects of elevated CO2 on overall physiology, water relations, growth, yield, and fruit quality of tomato (Lycopersicon esculentum Mill) cv. Arka Ashish. Plants were grown at elevated CO2 [550 (EC550) and 700 (EC700) ppm of CO2] in open top chambers. Increased assimilation rate, decreased stomatal conductance and transpiration rate were observed at elevated CO2 (EC) concentrations. Reduced leaf osmotic potential and increased water potential were observed at EC compared with the control (380 ppm of CO2) in flowering and fruiting stages. Lower total chlorophyll content was recorded at EC700. Plant height was significantly higher at EC550 compared with EC700. Higher number of branches was observed at EC700 as compared with plants grown at EC550 and the control. Leaf
area was lower at EC700 compared with EC550 but specific leaf mass was higher at EC700. Due to higher leaf dry mass and root dry mass, the plants grown at EC700 exhibited higher total dry mass compared to EC550 and the control. Increased number of flowers and fruits together with higher fruit set led to higher fruit yield at both EC concentrations. The highest yield increase was observed at EC700. The fruits showed a lower content of phenols, flavonoids, ferric reducing antioxidant potential, total soluble solids, and titratable acidity in plants grown at EC as compared with the control. The ascorbic acid content was high at both EC700 and EC550. Carotenoids and lycopene content was low at EC700 compared to higher content observed at EC550 and the control.ICAR under NICRA projec
A macroscopic soil-water transport model to simulate root water uptake in the presence of water and disease stress
Macroscopic modeling approaches based on the solution of the Richards equation with root water uptake (RWU) as a sink term can help in understanding soil-water-plant interactions within the rhizosphere. However, these models currently cannot capture the differences in RWU attributed to variations in plant health. Errors in simulating RWU from unhealthy plants are significant when disease-causing fungus inhibits water uptake rather than other usually considered plant stresses. We developed RWU reduction functions to simulate plant transpiration under combined water and disease stress conditions using linear and non-linear response models. The developed functions were implemented in the numerical model HYDRUS (2D/3D) to simulate water uptake from a root system in a radially symmetrical flow domain. Field experiments were conducted in the Vidarbha region of central India for one crop cycle on four citrus trees with varying disease intensities (healthy to severely diseased). The proposed model was rigorously tested by comparing its results with measured soil water contents and plant transpiration fluxes under various water and disease limiting conditions. Error in simulating RWU fluxes from unhealthy trees by ignoring the disease stress factor was found to be significant (15% for slightly diseased to 26% for the severely diseased tree). Parameters of the spatial root distribution and the disease stress response functions were optimized for each scenario using a genetic algorithm approach. Our results indicate that calibration targets to validate uptake reduction functions should be chosen cautiously based on the dominant stress experienced by the plant root system
Response of tomato (Lycopersicon esculentum Mill.) genotypes to elevated temperature
Not AvailableGlobal warming is an important issue threatening agriculture and allied sectors with serious consequences on
food production. Tomato being sensitive to temperature would be influenced by elevated temperatures under
climate change scenarios. Physiological response of five tomato genotypes, Arka Vikas, Arka Saurabh,
Abhinava, RF4A and 2195 to mild elevated temperatures at peak flowering and peak fruiting stages was
evaluated in temperature gradient tunnel (TGT) facility. The increase in temperature above the optimal, caused
reductions in net photosynthesis rate, transpiration and stomatal conductance with differences in response
among the five genotypes. The reductions were large at peak flowering stage compared to peak fruiting stage.
The Photochemical efficiency of PSII was also reduced at both peak flowering and fruiting stages due to
increase in temperature. At peak fruiting stage, due to increase in temperature, leaf epicuticular wax content
increased across the genotypes and higher total soluble sugars, reducing sugars and proline content contributed
to increase in leaf osmotic potential. Overall, better performance of germplasm line 2195 and cv. Arka Vikas
was observed under elevated temperature.ICAR under NICRA projec