544 research outputs found

    Native Defects and Their Doping Response in the Lithium Solid Electrolyte Li₇La₃Zr₂O₁₂

    Get PDF
    The Li-stuffed garnets LixM2M3′O12 are promising Li-ion solid electrolytes with potential use in solid-state batteries. One strategy for optimizing ionic conductivities in these materials is to tune lithium stoichiometries through aliovalent doping, which is often assumed to produce proportionate numbers of charge-compensating Li vacancies. The native defect chemistry of the Li-stuffed garnets and their response to doping, however, are not well understood, and it is unknown to what degree a simple vacancy-compensation model is valid. Here, we report hybrid density functional theory calculations of a broad range of native defects in the prototypical Li garnet Li7La3Zr2O12. We calculate equilibrium defect concentrations as a function of synthesis conditions and model the response of these defect populations to extrinsic doping. We predict a rich defect chemistry that includes Li and O vacancies and interstitials, and significant numbers of cation-antisite defects. Under reducing conditions, O vacancies act as color centers by trapping electrons. We find that supervalent (donor) doping does not produce charge compensating Li vacancies under all synthesis conditions; under Li-rich/Zr-poor conditions the dominant compensating defects are LiZr antisites, and Li stoichiometries strongly deviate from those predicted by simple “vacancy compensation” models

    Low electronic conductivity of Li7La3Zr2 O12 solid electrolytes from first principles

    Get PDF
    Lithium-rich garnets such as Li7La3Zr2O12 (LLZO) are promising solid electrolytes with potential application in all-solid-state batteries that use lithium-metal anodes. The practical use of garnet electrolytes is limited by pervasive lithium-dendrite growth, which leads to short-circuiting and cell failure. One proposed mechanism of lithium-dendrite growth is the direct reduction of lithium ions to lithium metal within the electrolyte, and lithium garnets have been suggested to be particularly susceptible to this dendrite-growth mechanism due to high electronic conductivities relative to other solid electrolytes. The electronic conductivities of LLZO and other lithium-garnet solid electrolytes, however, are not yet well characterized. Here, we present a general scheme for calculating the intrinsic electronic conductivity of a nominally insulating material under variable synthesis conditions from first principles, and apply this to the prototypical lithium-garnet LLZO. Our model predicts that under typical battery operating conditions, electron and hole mobilities are low (<1cm2V-1s-1), and bulk electron and hole carrier concentrations are negligible, irrespective of initial synthesis conditions or dopant levels. These results suggest that the bulk electronic conductivity of LLZO is not sufficiently high to cause bulk lithium-dendrite growth during cell operation, and that any non-negligible electronic conductivity in lithium garnet samples is likely due to extended defects or surface contributions

    Low electronic conductivity of Li7La3Zr2O12 solid electrolytes from first principles

    Get PDF
    Lithium-rich garnets such as Li 7 La 3 Zr 2 O 12 (LLZO) are promising solid electrolytes with potential application in all-solid-state batteries that use lithium-metal anodes. The practical use of garnet electrolytes is limited by pervasive lithium-dendrite growth, which leads to short-circuiting and cell failure. One proposed mechanism of lithium-dendrite growth is the direct reduction of lithium ions to lithium metal within the electrolyte, and lithium garnets have been suggested to be particularly susceptible to this dendrite-growth mechanism due to high electronic conductivities relative to other solid electrolytes. The electronic conductivities of LLZO and other lithium-garnet solid electrolytes, however, are not yet well characterized. Here, we present a general scheme for calculating the intrinsic electronic conductivity of a nominally insulating material under variable synthesis conditions from first principles, and apply this to the prototypical lithium-garnet LLZO. Our model predicts that under typical battery operating conditions, electron and hole mobilities are low ( < 1 cm 2 V − 1 s − 1 ), and bulk electron and hole carrier concentrations are negligible, irrespective of initial synthesis conditions or dopant levels. These results suggest that the bulk electronic conductivity of LLZO is not sufficiently high to cause bulk lithium-dendrite growth during cell operation, and that any non-negligible electronic conductivity in lithium garnet samples is likely due to extended defects or surface contributions.

    Microdevices for extensional rheometry of low viscosity elastic liquids : a review

    Get PDF
    Extensional flows and the underlying stability/instability mechanisms are of extreme relevance to the efficient operation of inkjet printing, coating processes and drug delivery systems, as well as for the generation of micro droplets. The development of an extensional rheometer to characterize the extensional properties of low viscosity fluids has therefore stimulated great interest of researchers, particularly in the last decade. Microfluidics has proven to be an extraordinary working platform and different configurations of potential extensional microrheometers have been proposed. In this review, we present an overview of several successful designs, together with a critical assessment of their capabilities and limitations

    Induction of Eosinophil Apoptosis by the Cyclin-Dependent Kinase Inhibitor AT7519 Promotes the Resolution of Eosinophil-Dominant Allergic Inflammation

    Get PDF
    Eosinophils not only defend the body against parasitic infection but are also involved in pathological inflammatory allergic diseases such as asthma, allergic rhinitis and contact dermatitis. Clearance of apoptotic eosinophils by macrophages is a key process responsible for driving the resolution of eosinophilic inflammation and can be defective in allergic diseases. However, enhanced resolution of eosinophilic inflammation by deliberate induction of eosinophil apoptosis using pharmacological agents has not been previously demonstrated. Here we investigated the effect of a novel cyclin-dependent kinase inhibitor drug, AT7519, on human and mouse eosinophil apoptosis and examined whether it could enhance the resolution of a murine model of eosinophil-dominant inflammation in vivo.Eosinophils from blood of healthy donors were treated with AT7519 and apoptosis assessed morphologically and by flow-cytometric detection of annexin-V/propidium iodide staining. AT7519 induced eosinophil apoptosis in a concentration dependent manner. Therapeutic administration of AT7519 in eosinophil-dominant allergic inflammation was investigated using an established ovalbumin-sensitised mouse model of allergic pleurisy. Following ovalbumin challenge AT7519 was administered systemically at the peak of pleural inflammation and inflammatory cell infiltrate, apoptosis and evidence of macrophage phagocytosis of apoptotic eosinophils assessed at appropriate time points. Administration of AT7519 dramatically enhanced the resolution of allergic pleurisy via direct induction of eosinophil apoptosis without detriment to macrophage clearance of these cells. This enhanced resolution of inflammation was shown to be caspase-dependent as the effects of AT7519 were reduced by treatment with a broad spectrum caspase inhibitor (z-vad-fmk).Our data show that AT7519 induces human eosinophil apoptosis and enhances the resolution of a murine model of allergic pleurisy by inducing caspase-dependent eosinophil apoptosis and enhancing macrophage ingestion of apoptotic eosinophils. These findings demonstrate the utility of cyclin-dependent kinase inhibitors such as AT7519 as potential therapeutic agents for the treatment of eosinophil dominant allergic disorders

    An injury audit in high-level male youth soccer players from English, Spanish, Uruguayan and Brazilian academies.

    Get PDF
    OBJECTIVES: To identify the most common injury types/locations in high-level male youth soccer players (YSP). DESIGN: Prospective cohort surveillance study. SETTING: Professional soccer club academies. PARTICIPANTS: Six hundred and twenty-four high-level male YSP [Under 9 (U9) to U23 year-old age groups] from academies in England, Spain, Uruguay and Brazil. MAIN OUTCOME MEASURES: Injury type, location and severity were recorded during one season. Injury severity was compared between age groups, while injury type and location were compared between nations. RESULTS: Four hundred and forty-three training or match injuries were recorded, giving an injury rate of 0.71 per player. Non-contact injuries were most common (58.5%), with most (44.2%) resolved between 8 and 28 days. Most injuries (75.4%) occurred in the lower limbs, with muscle (29.6%) the most commonly injured tissue. U14 and U16 suffered a greater number of severe injuries relative to U12 and U19/U20/U23/Reserves. Tendon injury rate was higher in Brazil vs. Spain (p < 0.05), with low back/sacrum/pelvis injury rate highest in Spain (p < 0.05). CONCLUSIONS: The proportion of severe injuries in U14 and U16 suggests YSP injury risk is maturation-dependent. Minimal differences in type and location between high-level YSP from four different countries suggest injury rates in this population are geographically similar

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    X-ray emission from the Sombrero galaxy: discrete sources

    Get PDF
    We present a study of discrete X-ray sources in and around the bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival Chandra observations with a total exposure of ~200 ks. With a detection limit of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30 kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray binaries (LMXBs). We quantify the differential luminosity functions (LFs) for both the detected GC and field LMXBs, whose power-low indices (~1.1 for the GC-LF and ~1.6 for field-LF) are consistent with previous studies for elliptical galaxies. With precise sky positions of the GCs without a detected X-ray source, we further quantify, through a fluctuation analysis, the GC LF at fainter luminosities down to 1E35 erg/s. The derived index rules out a faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent findings in several elliptical galaxies and the bulge of M31. On the other hand, the 2-6 keV unresolved emission places a tight constraint on the field LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101 sources in the halo of Sombrero. The presence of these sources cannot be interpreted as galactic LMXBs whose spatial distribution empirically follows the starlight. Their number is also higher than the expected number of cosmic AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray surveys. We suggest that either the cosmic X-ray background is unusually high in the direction of Sombrero, or a distinct population of X-ray sources is present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
    • …
    corecore