758 research outputs found

    Searches for physics beyond the standard model at the LHC

    Full text link
    At the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), protons and heavy ions are accelerated to velocities close to the speed of light and collided in order to study particle interactions and give us an insight to the fundamental laws of nature. The energy and intensity of the particle beams at the LHC are unprecedented, and a tremendous amount of data is collected by three experiments on the circular ring of the LHC that are specialized in proton-proton collisions. The data confirm the most successful theory of particle physics to date known as the standard model of particle physics to very good precision, including the long expected and recently discovered Higgs boson. The standard model cannot, however, accommodate experimentally observed phenomena like gravity, neutrino masses, and dark matter. The theory can also be theoretically unsatisfying as a result of parameters that go unexplained, such as the relatively low value of the Higgs mass despite its large quantum corrections, implying a lack of understanding. For this reason, in addition to precision measurements of standard model observables, experiments search for new physics beyond the standard model that could explain some of the shortcomings of the standard model. A selection of results for searches for new physics beyond the standard model using data recorded by three experiments on the LHC are presented in this talk.Comment: 7 pages, 20 figures. Contribution to the proceedings of the first African Conference on Fundamental Physics and Applications 2018, Namibia. Publication can be found at http://aphysrev.ictp.it/index.php/aphysrev/article/view/1608/58

    Simplified models for same-spin new physics scenarios

    Get PDF
    Simplified models are an important tool for the interpretation of searches for new physics at the LHC. They are defined by a small number of new particles together with a specific production and decay pattern. The simplified models adopted in the experimental analyses thus far have been derived from supersymmetric theories, and they have been used to set limits on supersymmetric particle masses. We investigate the applicability of such simplified supersymmetric models to a wider class of new physics scenarios, in particular those with same-spin Standard Model partners. We focus on the pair production of quark partners and analyze searches for jets and missing energy within a simplified supersymmetric model with scalar quarks and a simplified model with spin-1/2 quark partners. Despite sizable differences in the detection efficiencies due to the spin of the new particles, the limits on particle masses are found to be rather similar. We conclude that the supersymmetric simplified models employed in current experimental analyses also provide a reliable tool to constrain same-spin BSM scenarios.Comment: 11 pages + references, 7 figures; v2: added references, minor improvements in the presentatio

    Constraining supersymmetry at the LHC with simplified models for squark production

    Get PDF
    An important tool for interpreting LHC searches for new physics are simplified models. They are characterized by a small number of parameters and thus often rely on a simplified description of particle production and decay dynamics. Considering the production of squarks of the first two generations we compare the interpretation of current LHC searches for hadronic jets plus missing energy signatures within simplified models with the interpretation within a complete supersymmetric model. Although we find sizable differences in the signal efficiencies, in particular for large supersymmetric particle masses, the differences between the mass limits derived from a simplified model and from the complete supersymmetric model are moderate given the current LHC sensitivity. We conclude that simplified models provide a reliable tool to interpret the current hadronic jets plus missing energy searches at the LHC in a more model-independent way.Comment: 11 pages + references, 5 figures; v2: title changed, minor improvements in the presentatio

    Digital Pixel Test Structures implemented in a 65 nm CMOS process

    Full text link
    The ALICE ITS3 (Inner Tracking System 3) upgrade project and the CERN EP R&D on monolithic pixel sensors are investigating the feasibility of the Tower Partners Semiconductor Co. 65 nm process for use in the next generation of vertex detectors. The ITS3 aims to employ wafer-scale Monolithic Active Pixel Sensors thinned down to 20 to 40 um and bent to form truly cylindrical half barrels. Among the first critical steps towards the realisation of this detector is to validate the sensor technology through extensive characterisation both in the laboratory and with in-beam measurements. The Digital Pixel Test Structure (DPTS) is one of the prototypes produced in the first sensor submission in this technology and has undergone a systematic measurement campaign whose details are presented in this article. The results confirm the goals of detection efficiency and non-ionising and ionising radiation hardness up to the expected levels for ALICE ITS3 and also demonstrate operation at +20 C and a detection efficiency of 99% for a DPTS irradiated with a dose of 101510^{15} 1 MeV neq/_{\mathrm{eq}}/cm2^2. Furthermore, spatial, timing and energy resolutions were measured at various settings and irradiation levels.Comment: Updated threshold calibration method. Implemented colorblind friendly color palette in all figures. Updated reference

    Reinterpretation of LHC Results for New Physics: Status and recommendations after Run 2

    Get PDF
    We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Measurement of the Splitting Function in &ITpp &ITand Pb-Pb Collisions at root&ITsNN&IT=5.02 TeV

    Get PDF
    Data from heavy ion collisions suggest that the evolution of a parton shower is modified by interactions with the color charges in the dense partonic medium created in these collisions, but it is not known where in the shower evolution the modifications occur. The momentum ratio of the two leading partons, resolved as subjets, provides information about the parton shower evolution. This substructure observable, known as the splitting function, reflects the process of a parton splitting into two other partons and has been measured for jets with transverse momentum between 140 and 500 GeV, in pp and PbPb collisions at a center-of-mass energy of 5.02 TeV per nucleon pair. In central PbPb collisions, the splitting function indicates a more unbalanced momentum ratio, compared to peripheral PbPb and pp collisions.. The measurements are compared to various predictions from event generators and analytical calculations.Peer reviewe
    corecore