2,220 research outputs found

    Scalable design of an IMS cross-flow micro-generator/ion detector

    Full text link
    Ion-mobility spectrometry (IMS) is an analytical technique used to separate and identify ionized gas molecules based on their mobility in a carrier buffer gas. Such methods come in a large variety of versions that currently allow ion identification at and above the millimeter scale. Here, we present a design for a cross-flow-IMS method able to generate and detect ions at the sub-millimeter scale. We propose a novel ion focusing strategy and tested it in a prototype device using Nitrogen as a sample gas, and also with simulations using four different sample gases. By introducing an original lobular ion generation localized to a few ten of microns and substantially simplifying the design, our device is able to keep constant laminar flow conditions for high flow rates. In this way, it avoids the turbulences in the gas flow, which would occur in other ion-focusing cross-flow methods limiting their performance at the sub-millimeter scale. Scalability of the proposed design can contribute to improve resolving power and resolution of currently available cross-flow methods.Comment: 14 pages, 10 figures, revised regular paper, minor correction

    A Two-Stage Stochastic Optimization for Robust Operation of Multipurpose Reservoirs

    Get PDF
    Robust reservoir operation has long been considered a promising solution for addressing water allocation problems in the absence of reliable hydroclimatic forecasts. This study aims to evaluate the performance of this solution using a novel two-stage stochastic optimization model. The model maximizes economic benefits from reservoir deliveries while integrating stochastic inflows into a water allocation system with multiple demands and various constraints. The outcome of the model is a robust set of monthly reservoir releases that perform well under a wide range of hydroclimatic conditions. The model has been applied to the case of the Big Bend Reach of the Rio Grande/Bravo, a transboundary river basin of high importance for Mexico and the United States. The performance of the robust operation policy was assessed by comparing its outcome to those obtained under observed historical operations and an operation policy derived from a deterministic version of the optimization model that assumes perfect hydroclimatic knowledge. The results of this study indicate that the set of robust releases developed here outperforms historical reservoir operations and performs similarly to operations under perfect knowledge. These results show the effectiveness of robust reservoir operation and the usefulness of the proposed optimization model for decision-making under increasing hydroclimatic uncertainty

    Environmental flows in the Rio Grande - Rio Bravo basin

    Get PDF
    The Rio Grande/Bravo is an arid river basin shared by the United States and Mexico, the fifth-longest river in North America, and home to more than 10.4 million people. By crossing landscapes and political boundaries, the Rio Grande/Bravo brings together cultures, societies, ecosystems, and economies, thereby forming a complex social-ecological system. The Rio Grande/Bravo supplies water for the human activities that take place within its territory. While there have been efforts to implement environmental flows (flows necessary to sustain riparian and aquatic ecosystems and human activities), a systematic and whole-basin analysis of these efforts that conceptualizes the Rio Grande/Bravo as a single, complex social-ecological system is missing. Our objective is to address this research and policy gap and shed light on challenges, opportunities, and success stories for implementing environmental flows in the Rio Grande/Bravo. We introduce the physical characteristics of the basin and summarize the environmental flows studies already done. We also describe its water governance framework and argue it is a distributed and nested governance system across multiple political jurisdictions and spatial scales. We describe the environmental flows legal framework and argue that the authority over different aspects of environmental flows is divided across different agencies and institutions. We discuss the prioritization of agricultural use within the governance structure without significant provisions for environmental flows. We introduce success stories for implementing environmental flows that include leasing of water rights or voluntary releases for environmental flow purposes, municipal ordinances to secure water for environmental flows, nongovernmental organizations representing the environment in decision-making processes, and acquiring water rights for environmental flows, among others initiatives. We conclude that environmental flows are possible and have been implemented but their implementation has not been systematic and permanent. There is an emerging whole-basin thinking among scientists, managers, and citizens that is helping find common-ground solutions to implementing environmental flows in the Rio Grande/Bravo basin

    Hydro-Economic Modeling of Water Resources Management Challenges: Current Applications and Future Directions

    Get PDF
    Hydro-economic modeling (HEM) addresses research and policy questions from socioeconomic and biophysical perspectives under a broad range of water-related topics. Applications of HEM include economic evaluations of existing and new water projects, alternative water management actions or policies, risk assessments from hydro-climatic uncertainty (e.g., climate change), and the costs and benefits of mitigation and/or adaptation to such events. This paper reviews applications of HEM in five different categories: (1) climate change impacts and adaptation, (2) water–food–energy–ecosystems nexus management, (3) capability to link to other models, (4) innovative water management options, and (5) the ability to address and integrate uncertainty. We find that (i) the increasing complexity and heterogeneity of water resource management problems due to the growing demand and competition for water across economic sectors, (ii) limited availability and high costs of developing additional supplies, and (iii) emerging recognition and consideration of environmental water demands and value, have inspired new integrated hydro-economic problems and models to address issues of water–food–energy nexus sustainability, resilience, reliability through water (re)allocation based on the relative “value” of water uses. In the past decade, the field of HEM has improved the integration of ecosystem needs, but their representation is still insufficient and mostly ineffective. HEM studies address how to sustainably manage water resources, including groundwater which has become an area of particular interest in climate change adaptation. The current most used spatial and temporal resolutions (basin-scale and yearly time-step) are appropriate for planning but not for operational decisions and could be underestimating impacts from extreme events (e.g., flood risk) captured only by sub-monthly time scales. In addition, HEM primarily focuses on biophysical and economic indicators but often overlooks preferences and perspectives of stakeholders. Lastly, HEM has been widely used to analyze transboundary cooperation, showing benefits for increasing water security and economic development, particularly as climate change develops. We conclude that the field of HEM would benefit from developing more operational models and enhancing the integration of commonly neglected variables, such as social equity components, ecosystem requirements, and water quality

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    Transverse sphericity of primary charged particles in minimum bias proton-proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV

    Get PDF
    Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with pT0.5p_{\rm T}\geq0.5 GeV/c in η0.8|\eta|\leq0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (NchN_{\rm ch}) is reported for events with different pTp_{\rm T} scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low NchN_{\rm ch}, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean pTp_{\rm T} with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.Comment: 21 pages, 9 captioned figures, 3 tables, authors from page 16, published version, figures from http://aliceinfo.cern.ch/ArtSubmission/node/308

    Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security

    Get PDF
    The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in breeding programs addressing food security under climate change scenarios

    Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}} = 2.76 TeV

    Get PDF
    The inclusive transverse momentum (pTp_{\rm T}) distributions of primary charged particles are measured in the pseudo-rapidity range η<0.8|\eta|<0.8 as a function of event centrality in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm{NN}}}=2.76 TeV with ALICE at the LHC. The data are presented in the pTp_{\rm T} range 0.15<pT<500.15<p_{\rm T}<50 GeV/cc for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor RAAR_{\rm{AA}} using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-pTp_{\rm T} particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with RAA0.13R_{\rm{AA}}\approx0.13 at pT=6p_{\rm T}=6-7 GeV/cc. Above pT=7p_{\rm T}=7 GeV/cc, there is a significant rise in the nuclear modification factor, which reaches RAA0.4R_{\rm{AA}} \approx0.4 for pT>30p_{\rm T}>30 GeV/cc. In peripheral collisions (70-80%), the suppression is weaker with RAA0.7R_{\rm{AA}} \approx 0.7 almost independently of pTp_{\rm T}. The measured nuclear modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/284
    corecore