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Hydro-economic modeling (HEM) addresses research and policy questions from socio-
economic and biophysical perspectives under a broad range of water-related topics.
Applications of HEM include economic evaluations of existing and new water projects,
alternative water management actions or policies, risk assessments from hydro-climatic
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uncertainty (e.g., climate change), and the costs and benefits of mitigation and/or adap-
tation to such events. This paper reviews applications of HEM in five different categories:
(1) climate change impacts and adaptation, (2) water—food—energy—ecosystems nexus
management, (3) capability to link to other models, (4) innovative water management
options, and (5) the ability to address and integrate uncertainty. We find that (i) the
increasing complexity and heterogeneity of water resource management problems due to
the growing demand and competition for water across economic sectors, (ii) limited
availability and high costs of developing additional supplies, and (iii) emerging recognition
and consideration of environmental water demands and value, have inspired new integrated
hydro-economic problems and models to address issues of water—food—energy nexus
sustainability, resilience, reliability through water (re)allocation based on the relative
“value” of water uses. In the past decade, the field of HEM has improved the integration of
ecosystem needs, but their representation is still insufficient and mostly ineffective. HEM
studies address how to sustainably manage water resources, including groundwater which
has become an area of particular interest in climate change adaptation. The current most
used spatial and temporal resolutions (basin-scale and yearly time-step) are appropriate for
planning but not for operational decisions and could be underestimating impacts from
extreme events (e.g., flood risk) captured only by sub-monthly time scales. In addition,
HEM primarily focuses on biophysical and economic indicators but often overlooks pre-
ferences and perspectives of stakeholders. Lastly, HEM has been widely used to analyze
transboundary cooperation, showing benefits for increasing water security and economic
development, particularly as climate change develops. We conclude that the field of HEM
would benefit from developing more operational models and enhancing the integration of
commonly neglected variables, such as social equity components, ecosystem requirements,
and water quality.

Keywords: Hydro-economic modeling; water policy; global climate change; water—food—
energy—ecosystems nexus.

1. Introduction

Climate change threatens the water—food—energy—ecosystems nexus by funda-
mentally transforming seasonality, location, and intensity of hydro-climatic events
(Hoegh-Guldberg et al. 2018). These hydro-climatic changes combined with an-
thropogenic activities, such as unsustainable living styles, economic growth, and
water demands, require efficient and resilient water management strategies to
overcome various and compounding future challenges (Burek et al. 2016). To
achieve this, decision-makers and researchers must consider hydrologic and
socioeconomic dynamics, linkages, and feedbacks. Hydro-economic modeling
(HEM) combines temporal and spatial variability of biophysical elements with
socioeconomic dynamics to inform water management decisions (Harou et al.
2009). As a result, HEM has become a valuable tool for analyzing water-human
systems, forecasting water management scenarios, developing water policy, and
optimizing operations of water-related infrastructure (Bekchanov et al. 2017).

2340003-2



Water Econs. Policy 2023.09. Downloaded from www.worldscientific.com
by 2001:628:21f0:36:98ee:dcab: 141:c9e on 05/13/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Hydro-Economic Modeling of Water Resources Management Challenges

Harou et al. (2009) conducted a comprehensive review on HEM in 20009.
Other review papers related to HEM since then have focused on specific
elements such as integration and representation of the environmental variables
(Momblanch et al. 2016), forested watershed management decisions (Ovando and
Brouwer 2019), identification of other river management challenges and gaps
(Bekchanov et al. 2017 2016), and integration of climate variables to inform
adaptation plans (Ward 2021). Gaps identified include a link to biodiversity, water
quality, and social aspects such as health and equity. The need to incorporate the
evaluation of uncertain futures and assumptions has also become a core element in
model development (Herman et al. 2015). HEM has limitations, some of which
produce unreliable predictions on water demands, profitability, depletion of
resources, or resilience to climate change (Harou et al. 2009).

This review updates and expands contributions by Harou et al. (2009) based on
the literature published since then, given that water-related issues have worsened.
This aggravation in water issues has brought challenges to water policymakers and
researchers worldwide; however, these challenges have motivated innovations in
HEM and the development of better-informed models to address an uncertain future
and there have been computational improvements and conceptual advancements in
research (Morales-Hernandez et al. 2020). The overarching objectives of this review
are: () to identify how existing hydro-economic models (HEMs) have innovated in
integrating sectoral models such as climate, hydrological, energy, agricultural, en-
vironmental, and economy-wide models; and (b) to assess the scope of the impact
and water policy issues that HEMs have addressed. The rest of Section 1 gives a
background on HEM. Section 2 describes the methodology to select and review peer-
reviewed studies and their classification into five categories based on HEM appli-
cations. Section 3 presents the results, including the most common modeling tech-
niques and applications, temporal and spatial resolutions, and findings within each of
the five categories: (i) climate change impacts and adaptation, (ii) water—food—en-
ergy—ecosystems nexus management, (iii) capability to link to other models, (iv)
innovative water management options, and (v) the ability to address and integrate
uncertainty. Finally, Secs. 4 and 5 discuss the limitations of the general use of HEMs
and the review conclusions.

1.1. Fundamentals of hydro-economic modeling

Water is essential for maintaining societies and ecosystems and serves as input for
producing and processing goods and services. Precipitation, evaporation, and
runoff determine water availability in the natural environment at different spatial
scales and in different periods (day-to-day, month-to-month, seasons-to-season, or
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inter-annual). Water uses derive from human processes and variables, involving
projections and plausible development paths of population and consumption
growth, economy, and technological developments, among other factors. Water
resources modeling includes different details of biophysical processes at various
spatial and temporal resolutions and human water objectives under available
resources and infrastructure. Therefore, hydro-economic models (HEMs) combine
these biophysical, technological, and economic representations of the water
resources systems to create tools for informing and increasing knowledge in water
resources planning (Bekchanov et al. 2017; Harou et al. 2009).

In its beginnings, water research and development answered questions of
adding additional water supplies and facilities mainly with engineering solutions,
for example, by creating infrastructure projects (Booker et al. 2012; Exposito et al.
2020). These efforts can be characterized primarily as an expansionary water
economy where the benefits of developing new supplies exceed the cost (Randall
1981). Without computational capacities, cost-benefit analyses dominated the
economic analysis of water management systems and projects (Kneese 2011), in
which the benefits must exceed costs. Advancements in computer technologies and
computational algorithms stimulated the development of more integrated HEMs
combining elements of hydrologic uncertainty with water infrastructure systems
and multiple water users applying mathematical programming, simulations, and
decision theory (Maass et al. 1962; Reuss Martin 2003). Today we define water
resources management problems within a framework, incorporating complex
systems and concepts including economic and engineering principles, and for-
mulation of goals and constraints within resources limits and quality norms.

Since about the 1970s, the problem of water management and HEM has been
increasingly felt as not only the problem of a water infrastructure evaluation for
water supply increase but also of emergent cases of water scarcity, impacts of
floods and droughts, and increasing water demand by often competing water users.
New challenges widen the focus from water supply to water demand management,
including the design of water pricing mechanisms and water markets to regulate
and, in many cases, limit water demand (Randall 1981). The role of economics in
water management and policy analysis expanded from cost and benefit analysis of
proposed single-use infrastructure development projects (Booker et al. 2005;
Booker and Young 1994; Cai et al. 2003; Kahil et al. 2015; Noel and Howitt 1982)
to the analysis of optimal water (re)allocation across multiple water uses and water
sources over larger hydrologic regions (Essenfelder and Giupponi 2020). For
example, Inter-basin Water Transfers (IWT) (Essenfelder and Giupponi 2020)
became a subject of growing relevance for scientific and economic reasons due to
the expanding infrastructure base that allows for IWTs trading (Delacamara et al.

2340003-4



Water Econs. Policy 2023.09. Downloaded from www.worldscientific.com
by 2001:628:21f0:36:98ee:dcab: 141:c9e on 05/13/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

Hydro-Economic Modeling of Water Resources Management Challenges

2014; Marston and Cai 2016) and water (re)allocation potential (Pérez-Blanco
et al. 2020; Rey et al. 2019).

The HEMs have taken up new integrated features with the need to understand
better cross-sectoral linkages, feedbacks, water supply-demand relations, market
and nonmarket values, trading, investment prioritization, and technological inno-
vations. The HEM methods and approaches have evolved to advanced systems
analysis and modeling of different types of water supply and demand in inter-
connected engineering, economic and natural systems. The choice of water man-
agement options is often associated with tradeoffs among multiple stakeholders,
such as food production, energy supply, and ecosystem services, as well as across
space and time (Banzhaf 2009; Hurford et al. 2014). These features are usually
represented using a set of physical and technology choice equations. Numerical
optimization algorithms are then applied to calculate a set of primary decisions that
collectively result in the best feasible outcome from the perspective of specific
objectives critical to decision-making (Booker et al. 2012). For example, an eco-
nomic objective that focuses on minimizing costs or maximizing benefits is typical
in HEM because it facilitates valuing resources and policy constraints (Ward
2009). Similarly, simulation methods can be used in HEM to represent complex
water systems more realistically with nonlinear physical or institutional processes.
Traditionally, HEMs evaluate the efficiency of alternative water allocation
mechanisms under existing infrastructure (Booker et al. 2005; Booker and Young
1994; Cai et al. 2003; Kabhil et al. 2015; Noel and Howitt 1982) and identify
bottlenecks in the water system, where investments in new infrastructure would be
most beneficial (Acquah and Ward 2017; Gohar et al. 2015; Qureshi et al. 2010).
Recently, HEMs have also assessed how effectively the water system can adapt to
future climatic and socioeconomic changes and explored the value of various
options for doing this (Connor et al. 2009; Escriva-Bou et al. 2017; Kahil, Ward
et al. 2016; Medellin-Azuara et al. 2008; Tanaka et al. 2006).

The complexity of water systems analyses is increasing to explore the con-
nections with other sectors (e.g., ecosystems, industry, energy and agriculture), and
HEMs can be coupled with other models to integrate the dynamics of multiple
systems in their formulation. This integration can be internal (by incorporating the
other systems’ mathematical definitions into the simulations or optimizations
performed by the HEM) or external (by using a modular coupling framework
where the HEM and the models for other systems dynamics are solved separately
but using input-output feedback). These approaches to integrate multiple systems
can be used to assess the impact of water operations and water management
policies in other sectors at different spatio-temporal resolutions, including the
food—water—energy—ecosystem nexus. Additionally, these frameworks allow to
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assess potential impacts and tradeoffs besides economic performance by including
performance metrics from other sectors in the water allocation or water policy
assessment, such as water security, water affordability, and ecosystem services.
This allows HEMs to be more relevant to practical applications, including
adaptation to climate change and hydroclimate hazards management.

Advanced hydro-economic decision support systems combine advanced
hydrological simulation models, optimization algorithms, uncertainty and risks,
artificial intelligence, machine learning, real-time decision-making, or statistical
analysis approaches with broad socioeconomic, institutional, political, legal, eco-
logical perspectives, and cultural characteristics. These systems inform water in-
frastructure developments and public-private policy designs aiming at allocation
and quality conservation of water at various scales within a variety of research
studies related to water quality, hydropower production, agricultural activities,
mitigation of damages from extreme hydroclimate events (e.g., floods, droughts),
industrial and households water provision, water security and resilience of water
infrastructure, outdoor recreation, environmental and other water-related market
and nonmarket benefit values. An example of decision support systems includes
the Drought Water Rights Allocation Tool (DWRAT) which is used in California’s
Russian River Watershed for optimizing water allocation to riparian and appro-
priative water rights holders (Whittington 2016). Another example is the use of
AQUATOOL Decision Support System (Andreu et al. 1996) in Spain used for
water resources planning and management of their main river basins, including
water quality (Paredes et al. 2010) and environmental-economics (Pedro-Monzonis
et al. 2016). HEM represents the economic benefit of water systems with multiple
interdependent water users (each having individual goals, constraints, preferences,
and risk attitudes) by optimizing or simulating those systems in a structured
manner. Simulation models analyze system responses to different scenarios.
Optimization models (or mathematical programming) seek to find optimal values
for an objective function representing a system using an appropriate optimization
algorithm/method. For example, problems can evaluate optimal water reservoir
capacity and operation (water releases and water allocation), multiple-reservoir
systems management, conjunctive use of water resources, water quality, hydro-
power generation, crop production, water security, water infrastructure resilience,
and flood protection (Bekchanov et al. 2017; Ermolieva et al. 2014; Kahil, Connor
et al. 2015; Kabhil et al. 2015; Kahil, Ward et al. 2016; Ortiz-Partida et al. 2019;
Pulido-Velazquez et al. 2004; Strokal et al. 2020). Models can target single- and
multi-objective optimization, depending on the intended application (e.g., research
and policy goals) and practical restrictions (e.g., data availability or computational
facilities).
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Common objective functions include minimizing costs, maximizing profits,
increasing the efficiency of water allocation by sector (agricultural, domestic, en-
ergy, manufacturing), or improving ecological preservation (Kahil et al. 2015;
Strokal et al. 2020). Objective functions can include the prices and costs associated
with water releases, withdrawal and storage, water infrastructure operation and
maintenance, demand and supply, constraints on water quality, disposal into the
environment of all residuals of the production, or service activity (Krause et al.
2005). Resilience and reliability criteria are particular risk-related system perfor-
mance criteria. Inclusion of these criteria in addition to the (expected) costs and
benefits (Ermoliev and Winterfeldt 2012) allows various stakeholders and groups
to better understand how to design robust and secure integrated hydro-economic
systems and water—food—energy—environmental nexus in the presence of potential
uncertainty and risks (Ermolieva et al. 2003).

Depending on the parameter’s environment, optimization problems are classi-
fied as deterministic and stochastic. Deterministic optimization approaches are
applied when all HEM inputs and current and future parameters (such as weather
variability, climate change, market risks, varying risk perception, and stakeholder
attitudes) are assumed to be known with certainty or when the uncertainty (and the
related risks) can be ignored. Stochastic optimization problems and methods have
parameters or constraints that depend on random variables and yield probabilistic
outcomes that address system uncertainty. This approach is beneficial for climate
change and weather variability, and it benefits from increasing computation
capacity. Stochastic methods are essential for integrating short- and long-term
sustainable development and planning resilient and reliable water management
systems in connection to other systems (water—food—energy—ecosystem nexus).

Dynamic optimization is an approach that incorporates the change in time of
dynamic variables such as precipitation or streamflow. This approach breaks the
overall decision into a series of more manageable smaller decision over time,
making it one of the most relevant approaches in HEM giving the natural vari-
ability of hydro-economic variables. Most hydro-economic problems concern
dynamic water balance equations and optimal water management over different
time horizons while pursuing short-, mid, long-term strategic, socioeconomic, and
environmental goals and constraints. For example, dynamic problems arise in
scheduling optimization, hydropower plants operation, multipurpose reservoirs
operation management, water provision for water—food—energy—ecosystem nexus,
water infrastructure investments problem, catastrophic risks management, and in
many other practical studies.

Integrated HEMs can be holistic or modular (distributed) models (Cai et al. 2003).
Holistic models combine natural and anthropogenic submodels in one code, e.g.,
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process-based and sectoral models (agricultural, energy, hydrological). However,
holistic models often involve aggregation and simplification of rather complex
hydro-economic processes. Individual distributed models can be rather detailed and
computationally intensive, designed for simulation and optimization purposes
(Bredehoeft and Young 1970). They represent natural and anthropogenic systems
(e.g., water, food, energy, hydrological, and social). Incorporating distributed models
into a one-integrated framework requires appropriate model linkage procedures.

2. Methodology

This review provides a synthesis of progress in recent development and applica-
tions of HEMs. To cover a wide range of research, we utilized two article data-
bases: Scopus and Science Direct. As the last comprehensive review on HEM was
completed in 2009 (Harou et al. 2009), the search was constrained to peer-
reviewed articles from 2009 to July 2020 (including in-press articles). The first list
of articles was obtained using the search term “Hydro-economic model”, output-
ting 560 research papers. The articles list was supplemented with 33 relevant
documents based on the authors’ experience, yielding 593 in total. The total
number of articles was later reduced to 530 after removing duplicates.

Table 1. HEM Categories, Primary Words, and Secondary Words used to Select and Categorize 169
Peer-Reviewed Papers

Primary Words Secondary Words
cost, hydro-economic, benefits, economics, l
economy, hydro-economic

1 Use of hydro-economic models for the as-  adaptation, climate change, drought,
sessment of the impacts of water scarcity, extreme climate, extreme event,
climate change and variability (including flood, mitigation, water security,
extreme events of floods and droughts), and climate variability, water scarcity
the evaluation of mitigation and adaptation
policies

2 Representation of the water—food—energy—  nexus, food security, energy security,
ecosystem nexus management challenges in  water security
HEMs, including water quality

Categories 3 Integration of HEMs with other sectoral link, coupled, agent-based, econo-
models such as climate, hydrological, ener- my-wide, remote sensing, machine
gy, agricultural, environmental, agent-based, learning, new technology, big data,
or economy-wide models and use of newly coupling
available datasets (e.g., satellite observa-
tions, big data, machine learning) challenges
and opportunities
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Table 1. (Continued)

Primary Words Secondary Words

cost, hydro-economic, benefits, economics, l
economy, hydro-economic

4 Emerging innovative water management water markets, opportunity cost,
options such as market-based mechanisms  virtual water, policy instrument, en-
pricing policies, payment for ecosystem vironmental water

services, and virtual water trade, needed for
the adaptation to water supplies variability

5 The possibility for new generation HEMs large scale, robust, stochastic,
ranging from micro- to large-scale applica-  uncertainty
tions capable of addressing uncertainty,
challenges, and opportunities

We created five categories based on emerging HEM applications: (1) climate
change impacts and adaptation, (2) water—food—energy—ecosystems nexus man-
agement, (3) capability to link to other models, (4) innovative water management
options, and (5) new generation of HEMs to address and integrate uncertainty.

Articles were filtered and categorized based on 6 primary and 34 secondary
words. The primary words were economics-related, and secondary words were
relevant keywords within categories. If one primary word and any secondary
words were contained within an article’s title, abstract, or keywords, it was in-
cluded and assigned to one category. Totally, 169 articles survived filtering and
were categorized (Figure 1).

Each article was read, and information was extracted to create a database with
information about each application. This database includes identifier information
such as author, year of publication, and title. It also considers modeling techniques
(results in Sec. 3.1) which include model types (e.g., simulation, optimization),
taxonomy (fully coupled vs. modular) to determine if economic variables are
directly integrated into the model or not, and other modeling techniques. When
possible, we identified model characteristics such as spatial and temporal resolu-
tion, software platform, limitations, and their integration with other models.

We extracted the main objective of each hydro-economic model and the type
of input variables and decision variables that feed into it. We categorized
variable types into hydrology (e.g., streamflow, groundwater depth), climate
(e.g., precipitation, temperature, solar radiation, evapotranspiration), energy (e.g.,
hydropower generation, energy used), agriculture (e.g., crop yield, irrigation water,
crop type), environmental (e.g., water quality parameters, environmental flows,
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Figure 1. Number of Papers Published per Year in Each Category, Only Considering Articles that
Suit the Scope of the Review. We Reviewed 169 Articles in Total

Note: 2020 shows articles up to July.

species numbers), and social (e.g., population, urban and rural water uses,
industrial water use). Variables in these categories were used as a proxy to assess
the main focus of HEMs (hydrology, climate, energy agriculture, environment, and
social), and they may overlap (results in Sec. 3.1.3). For example, a model using
crop yield and acreage from the agriculture category and streamflow and
groundwater storage from the hydrology category would be categorized as agri-
culture and hydrology. Finally, we addressed the potential impact of HEMs by
identifying their implications for policy changes and development within each
category (Sec. 3.2).

3. Review Findings: Modeling Techniques and Applications
3.1. Modeling techniques in HEM

HEMs are diverse in terms of their modeling approach (e.g., optimization vs.
simulation), objective functions (e.g., single, multiple, maximization, minimiza-
tion), assumptions (e.g., deterministic, stochastic), integration with other models
(e.g., modular vs. fully coupled), water use sector of interest (e.g., agriculture,
energy, environment), spatial and temporal scales, as well as their considerations of
variables (e.g., hydrology, climate change, water demands). Here we describe the
different modeling characteristics used in HEMs since 2009.
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3.1.1. Optimization vs. simulation

About half (53%) of HEMs utilized optimization procedures, another third (28%)
used simulation, and the rest applied a mix of simulation and optimization (19%).
Optimization models search for an optimal response (“what is best”) given a series
of constraints and variables. These models mainly focus on maximizing benefits
(e.g., Arjoon et al. 2014; Etkin et al. 2015; Zhu et al. 2015) or minimizing water
deficits (e.g., Davidsen et al. 2015; Ghosh et al. 2014; Hurd and Coonrod 2012;
Souza da Silva and De Moraes 2018), whether individually for agriculture (e.g.,
Fernandez et al. 2016; Medellin-Azuara et al. 2014), hydropower (e.g., Bekchanov
et al. 2015; Gonzalez et al. 2020), or for a combination of diverse water users (Do
et al. 2020; Jalilov et al. 2015; Kahil, Albiac et al. 2016). Simulation models apply
“what-if” analyses. They have been used to test alternative water policies and
management actions (Assaf 2009; Essenfelder et al. 2018; Kahil et al. 2016) and
estimate hydroclimatic events of different magnitudes (e.g., Foudi 2015; Kour-
gialas and Karatzas 2013). Coupled simulation and optimization models are a
hybrid of the former, where simulations test various alternatives that are later
individually optimized for most likely scenarios (e.g., Emami and Koch 2018;
Foster et al. 2017; Settre et al. 2019).

3.1.2. Spatial and temporal resolution

HEMs can analyze multiple spatial and temporal resolutions, depending on the
problem at hand. In general, as scale and temporal resolution increase, the details
increase with a clear tradeoff between accuracy and computational cost. Large-
scale HEMs have the potential to inform critical areas needing future investments
in water infrastructure, and policymakers and stakeholders must navigate man-
agement options, future scenarios, and the potential tradeoffs among economic and
environmental objectives (Kahil et al. 2018). Small-scale models can help the
economic development of smaller regions, such as Small Island States, when it
relies on water availability, quality, and price. Integrating groundwater hydrology,
climate change scenarios, economics, and land use is essential to cope with climate
stress in small economies (Gohar et al. 2019).

Overall, the most common spatial and temporal resolutions are the basin scale
and yearly time-step, but there is variation across categories. HEMs focusing on
climate change impacts and adaptation mainly cover basin and regional (whole or
parts of multiple basins) scales at yearly and monthly temporal resolutions
(Macian-Sorribes et al. 2017; Tilmant et al. 2020; Yang et al. 2016). Models on the
water—food—energy—ecosystems nexus are applied to regional or country levels and
commonly use yearly resolutions, likely due to these models’ complexity and
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intended reach (e.g., Gonzalez-Salazar 2016; Jalilov et al. 2015. Those HEMs with
the capability to link with other models usually cover basin-scale followed by
regional and include a monthly time-step (e.g., Reddy et al. 2015; White et al.
2015; Zekri 2017). Some models in this category had multiple scale and temporal
resolutions as they linked different models. Given the nature of water management
options (e.g., water markets), scales are administrative such as state or country
level, and manage planning time-steps like yearly and monthly. Lastly, HEMs that
address and integrate uncertainty present diverse spatial applications, ranging from
local to entire countries (e.g., Arjoon et al. 2014; Weibel and Madlener 2014).

HEMs often cover vast spatial and temporal scales that allow planning but
hardly any are operational. The field would benefit by increasing focus on sub-
monthly time-steps that can capture nuances from hydroclimatic events (e.g., ex-
treme events). Some examples of current operational HEMs are in the energy
sector for hydropower operations. For example, Brazil’s energy sector relays on
hydropower, and hydropower plants are allowed to sell part of the energy gener-
ation potential (water in reservoirs) as energy generation rights to energy traders
and large consumers. Energy market price (known as “Preco de Liquidagdo das
Diferencas” or “PLD”) depends primarily on natural flows at the catchment point
of each dam, and energy traders and large consumers forecast it to know if the sale
prices will go up or down to decide when to trade. That can be done at monthly,
daily, or even hourly time steps.

3.1.3. Water use sectors and data requirements

Most of the HEMs in this review considered hydrology (72%) and climate (47%)
variables and primarily focused on agriculture (53%), followed by energy (36%),
environment (30%), and social aspects (28%) with common overlap among two or
more sectors (Figure 2). Hydrology and climate variables often included in HEMs
are streamflow, groundwater depth, runoff, aquifer recharge, hydraulic

Social
Environment
Energy
Agriculture
Climate

Hydrology
o

>

2% 40% 60% 80% 100%

Figure 2. Type of variables used by HEM
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conductivity, soil moisture, precipitation, temperature, and potential evapotrans-
piration (Blanco-Gutiérrez et al. 2013; Kabhil et al. 2016; Varela-Ortega 2011).
Data requirements regarding agriculture often consider crop type, area, yield, ir-
rigation method, production costs, applied water, and actual evapotranspiration
(Essenfelder et al. 2018; Kahil et al. 2016; Ponce et al. 2017). HEMs focused on
energy-considered variables like hydropower generation, energy use, costs and
prices, water requirements, reservoir storage, and production capacity (e.g., Arjoon
et al. 2014; Gonzalez-Salazar 2016; Weibel and Madlener 2014). Applications to
the environment commonly integrate environmental flow requirements, cost of
conservation, and occasionally integrated water quality parameters (e.g., Naing-
golan et al. 2018; Varela-Ortega 2011). Environmental flow requirements were
generally integrated as constraints and often depicted as ‘minimum’ in-stream
flows to be met, often having the same minimum for the entire period of analysis
(e.g., Dogan et al. 2018; Girard et al. 2015). Social variables were the less por-
trayed in HEMs and included demographics and water infrastructure, operation
costs, water demands, damages from floods, and cost of adaptation strategies (e.g.,
Escriva-Bou et al. 2017; Foudi 2015).

HEMSs can help manage water resources, considering water demands from
urban, industrial, energy, and agricultural sectors, and environmental requirements.
Areas of opportunity to improve HEMs are (i) better consideration and depiction of
environmental flows that represent the needs of aquatic and riparian ecosystems,
(ii) water quality parameters to inform human health concerns and water treatment
methods, and (iii) more sophisticated integration of hydroclimatic projections,
including the consideration extreme scenarios to account for low probability but
costly consequences that would allow us to plan for an uncertain future.

3.2. Focus of hydro-economic models and policy implications

Contemporary HEMs focus on a variety of topics (Table 2). Among the most
studied are the assessment of climate change impact and adaptation, sustainable
management of groundwater resources, optimization of agricultural production,
hydropower operations, governance and cooperation, and tradeoffs associated with
water allocations (e.g., integrating environmental flows). Other less recurrent
topics were water markets (Kahil et al. 2016; Medellin-Azuara et al. 2009), water
prices (Lopez-Nicolas et al. 2018; Pulido-Velazquez et al. 2013), the importance of
collaboration across multiple disciplines (Girard et al. 2015), water quality
(Nainggolan et al. 2018), desalination (Huang and Lee 2019), reservoir operations
(Etkin et al. 2015; Ortiz-Partida et al. 2019), the relevance of weather forecast
(Etkin et al. 2015; Siderius et al. 2016), and the water—energy—food—ecosystems
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nexus (Bekchanov and Lamers 2016; Jalilov et al. 2016; Souza da Silva and De
Moraes 2018).

As climate change advances, analyzing the effects of sustained droughts is
becoming an interesting area of study. Models evaluate response to extreme
drought using water trading and other adaptation strategies (Jiang and Grafton
2012). For example, droughts in the Mediterranean basin represent a burden for
agricultural and environmental users as water availability reduces and irrigated
water demands increase, but adaptation activities, while costly, could reduce the
economic impacts (Escriva-Bou et al. 2017; Etkin et al. 2015; Harou et al. 2010).

The most common adaptation to drought impacts was finding ways to manage
groundwater resources sustainably. Several HEMs demonstrate that groundwater
functions as a buffer during dry periods and emphasize the relevance of con-
junctive water use (e.g., joint management of surface water and groundwater)
(Foster, Brozovi¢ and Butler 2017; Foster et al. 2017; Hurd and Coonrod 2012;
MacEwan et al. 2017; Ward et al. 2019; Zhu et al. 2015. Others highlight the
importance of groundwater banking to offset irrigators’ lack of surface water and
reduce profit losses (Ghosh et al. 2014) and offer increasing irrigation water prices
along with energy prices to prevent aquifer depletion (Balali and Viaggi 2015).
When allocating resources for adaptation strategies, it is essential to recognize that
expected impacts may not be significant for specific economic sectors. Accord-
ingly, actions should focus on other sectors or on more relevant impacts to that
sector. Also, places with limited access to groundwater and uncertain surface water
deliveries during drought are the most economically vulnerable regarding crop
revenues, employment, and household income (Medellin-Azuara et al. 2015).
When there is a tradeoff between socioenvironmental justice and water (or any
natural resource) access for major water users, it is necessary to create multi-benefit
strategies that preserve justice for the most vulnerable stakeholders while providing
economic prosperity for everyone and considering the effects of climate change
(Fernandez-Bou et al. 2021, 2023).

A recommendation is to encourage governments to protect farmworkers and
provide incentives for farmers to adopt more efficient irrigation technologies and
shift towards climate-smart agricultural practices. Such improvements would
benefit the basin by improving food and energy security, increasing income, and
protecting the environment (Bekchanov et al. 2016; Grové 2011; Siderius et al.
2016). Cost-free adaptation strategies to increasing water scarcity and higher
temperatures include changes in cropping patterns and deficit irrigation (Aghapour
et al. 2020). Climate change will have uneven consequences across farming
communities. For instance, a study in Chile estimated that climate change impacts
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crop yields showing increased yields for wheat but decreases for other crops like
alfalfa, sugar beet, and beans (Ponce et al. 2017).

The water demand of multiple sectors needs to be considered for an equitable
future. Several HEM studies evaluate the value of cooperation and the importance
of considering multiple objectives, showing that small losses for one sector may
represent significant benefits for another and overall higher benefits for the entire
system (Bekchanov et al. 2015; Jalilov et al. 2015; Kirby 2015). Furthermore, the
costs and outcomes of the adaptation strategies vary between stakeholders.
Nainggolan et al. (2018) illustrate the need to develop joint regional policies for
water and climate adaptation that accounts for uneven effects and cost across
stakeholders, once again showing the value of transnational cooperation.

Policies are an avenue for protecting the environment and future human water
needs. Kahil et al. (2016) indicate that without adequate policies protecting water
resources and natural ecosystems, water users will strategically deplete reservoirs,
aquifers, and river flows for short-term adaptation to climate change, disregarding
the environmental impacts and future human activities. The following subsections
describe and analyze the range of policy issues addressed by HEM across the five
categories.

3.2.1. Category 1: Hydroclimate, extremes, and climate change

Articles within this category used HEM to assess the impacts of climate change
and variability (including extremes such as floods and droughts) and evaluate
mitigation and adaptation policies.

Some studies generate water scarcity scenarios by lowering water availability
by a percentage as a proxy for climate change effects or only considering changes
in yearly average precipitation (Esteve et al. 2015; Jeuland et al. 2014). Depending
on the region, water scarcity results from increasing demand from a growing
population, a decrease in water supply due to climate change (Hurd and Coonrod
2012), or the integration of environmental flow requirements (Blanco-Gutiérrez
et al. 2013). These HEM studies are valuable and could guide the design of
policies that support more efficient and sustainable water management.

Policy implications regarding climate change include recognizing that
groundwater resources play a significant role in ameliorating price spikes and in
the hydroclimate as groundwater serves as a buffer during dry periods (Hurd and
Coonrod 2012; Medellin-Azuara et al. 2015). In addition, it is important to con-
sider that the economic value of groundwater depends on the initial conditions of
aquifers and that sustainable yields increase productivity and maintain drought
resilience (Foster, Brozovié¢, and Butler 2017; Foster et al. 2017). Another study in
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the Ganges River found groundwater management to be cheaper and more effec-
tive than increasing surface water storage (Sadoff et al. 2013). Further studies show
higher economic returns under non-overdraft policies (Assaf 2009). This research
highlights the importance of policies that protect resources and incentivize man-
aged aquifer recharge to promote groundwater sustainability as a strategy to in-
crease resilience and prevent future water deficits (Martinsen et al. 2019).

International cooperation is one method to increase water security. Several
HEM studies show how international collaboration and coordination would in-
crease water and economic security, even under water scarcity (Jeuland et al. 2014;
Nainggolan et al. 2018). Simulated water scarcity scenarios forecasted impacts of
water availability or assessed the efficiency of international policies of countries
facing scarcity (Jeuland et al. 2014). For example, Jeuland et al. (2017) developed
a basin-wide model for the Nile River to evaluate large infrastructure projects and
their benefits under international cooperation and low-flow scenarios.

A barrier to cooperation is the inequitable distribution of benefits among
countries, sectors, and water users (Tilmant et al. 2012). Studies show how failing
to integrate the interests of upstream and downstream water users from water
infrastructure projects (e.g., dams) or only a particular sector (e.g., hydropower)
reduces overall basin benefits (Bekchanov et al. 2015). Such findings highlight the
importance of considering the tradeoffs and synergies at the water—food—energy—
ecosystem nexus.

HEMs in this category also can have more specific applications like the eco-
nomic implications of riparian vegetation and flood damages (Kourgialas and
Karatzas 2013), the economic potential of rainwater harvesting systems in rainfed
agricultural areas (Pandey et al. 2013), sustainable development of hydropower
operations (Hirsch et al. 2014), or the evaluation of local water markets to aid
policymakers in designing regulations (Erfani et al. 2014; Ghosh et al. 2014).

Integration of climate change is not standard across HEMs. Some of the models’
integration of climate change is considering paleorecord climate (Harou et al.
2010) or only incorporate simple precipitation metrics based on changes on annual
averages (Balali and Viaggi 2015) instead of downscaled data from Global Cir-
culation Models (GCMs). Of the HEM studies that integrate data from GCM,
many include only data from a single model, likely missing other relevant sce-
narios. In many cases, considerations of climate change may be insufficient, with
little to no incorporation of extreme scenarios or metrics relevant to water man-
agement such as changes in the ratio of precipitation falling as rain vs snow,
evapotranspiration, precipitation in extreme events, and frequency of dry and wet
years (Persad et al. 2020).
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Few HEMs focus on damages derived from sea-level rise. Medellin-Azuara
et al. (2014) built a hydro-economic model to estimate local crop yield and revenue
losses due to salinity increases in the Sacramento-San Joaquin Delta in California.
While their results show less than a 1% decrease in revenue, they only consider
damages to the agricultural sector and no other economic damages from sea-level
rise.

Future HEMs that integrate climate change would benefit from a more detailed
integration of relevant hydro-economic metrics from climate change models.

3.2.2. Category 2: Representation of the water—food—energy—ecosystem
nexus management challenges in HEMs

The nexus between water, food, energy, and ecosystems is one of the most relevant
topics that HEMs have addressed. This section focuses on integrating climate,
hydrological, agricultural, energy, and environmental models to improve decision-
making related to the food-water-energy-ecosystem nexus and the systems’ eco-
nomic performance.

HEMs are essential decision-making tools for governments to plan infrastruc-
ture and manage socioeconomic and environmental risks (Rising 2020; Siska and
Takara 2015), including water storage. For example, water availability changes
can have adverse impacts on dams’ economic performance in the Senegal River
basin. However, adaptive policies at the structural scale can palliate the con-
sequences by enabling new water storage in dams (Raso et al. 2019). For example,
the Upper Indus basin might benefit from new dams to reduce 60% of the unmet
water demand, although the recovery of water demand requires sustainable water
governance (Amin et al. 2018). Also, HEMs considering interactions between
water, energy, and food systems can help optimize dam operation to find solutions
that jointly benefit irrigation and hydropower production, for example, in the
Lancang-Mekong River (Do et al. 2020) or in the Amu Darya basin (Jalilov et al.
2016).

In regions with high water demand where placing big new dams is infeasible
(for example, California), replenishing groundwater and developing sustainable
policies to preserve aquifers is one of the best alternatives to maximize positive
externalities in the different elements of the nexus. Creating an adequate cost and
benefit analysis of the water—food—energy—ecosystem nexus to study the economic
behavior driven by groundwater pumping can identify the best operational
practices at the structural level and the opportunities to maximize water value
(Hrozencik et al. 2017; Raso et al. 2019; Rising 2020). Significant tradeoffs exist
between water, energy, and greenhouse gas emissions in different policy scenarios,
including urban water use (Escriva-Bou et al. 2018). Groundwater can be a
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significant source of uncertainty but having groundwater data and understanding it
is essential for stakeholders and policymakers, as they depend on accurate infor-
mation to effectively integrate economic decisions and policies (Hrozencik et al.
2017). Otherwise, insufficient groundwater information may misrepresent the
water availability and distribution, affecting management and policy development
over time and creating adverse effects like lowering groundwater levels, reduction
of groundwater storage, depletion of interconnected surface water or land subsi-
dence, among other.

Farming has a significant associated risk because agricultural productivity
depends on water and climate conditions, as well as crop price and production cost
volatility. Finding the best strategies to alleviate that risk can improve the overall
performance of the local economies. For example, in a semi-arid climate like
Northern Ghana, credit access for irrigation becomes a significant incentive for
farmers to reduce the adversity of climate variability (Wossen et al. 2014). Sea-
sonal adjustments in cropped areas, like the Ganges Basin, are flexible strategies to
cope with rainfall variability, especially during transplant time and crop manage-
ment (Siderius et al. 2016). Water planning and management in northern Afgha-
nistan influence total economic welfare in irrigated agriculture as storage capacity
and water appropriation significantly impact on their agriculture (Gohar et al.
2015).

The effects of climate change (significantly increasing temperatures in a dry
scenario) may change rainfall patterns and water allocation, resulting in a severe
prolonged threat to agricultural production, for example, in Australia (Ejaz Qureshi
et al. 2013). The relationship between rainfall, growth, and long-term income in
Indian states is highly complex and sensitive to rainfall variability (Gilmont et al.
2018). The Zarrine River Basin can benefit from shifting from low-value crops,
such as alfalfa, to high-value crops that maximize water use, such as canola,
saffron, and pistachio (Emami and Koch 2018). By modeling the nexus among
water, food, energy, and nature, every region can better understand its local
challenges and inform decision-makers about adaptation and successful strategies.

Energy constraints play a crucial role in water allocation decisions. A clear
example is the integrated assessment and management of the Aral Sea Basin’s
water, food, and energy systems (Bekchanov et al. 2016). However, governmental
entities should consider the social and environmental impacts of massive energy
deployments (van der Zwaan et al. 2018).

Integrated water-power models point to energy efficiency increases, even in
well-developed hydropower generation systems like the Iberian Peninsula. Shifting
production toward efficient power plants (such as combined cycle gas power
plants) and constraining CO, pricing policies create systems less vulnerable to
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cooling constraints. In turn, more efficient power plants can potentially increase the
use of carbon capture systems with cooling needs exceeding those of the steam
cycle (Payet-Burin et al. 2018). Countries with different challenges, such as
Colombia, may require additional measures to mitigate climate change impact as
bioenergy alone cannot significantly reduce emissions by 2030 (Gonzalez-Salazar
2016).

HEMs can provide the necessary understanding of the relationships between the
climate, water, and sectors to inform the best water infrastructure investments.
For example, HEMs can inform decisions about investing in surface or ground-
water storage or other agriculture-based adaptation strategies (Yang et al. 2013),
like transitioning from rainfed towards climate-smart sustainable agriculture or
high-income agriculture with less environmental impacts and increased production
(Siderius et al. 2016), or about facilities to recharge local aquifers optimizing
environmental flows, agricultural and urban water delivery, and hydropower
generation (Maskey et al. 2022).

Advancing innovation in the nexus of food, energy, water, and ecosystems can
help bring new opportunities to develop those sectors. For example, gridded global
crop models can inform sustainable irrigation water withdrawals given interna-
tional drivers of change and local environmental constraints, decreasing the ad-
verse effects of irrigation vulnerability, land-use change, and the associated carbon
emissions (Liu et al. 2017). HEMs can provide helpful information for donor
countries to fund initiatives in low-income countries to achieve water and food
security (Ejaz Qureshi et al. 2013). In addition, HEMs can, for any region, min-
imize environmental and economic costs under decreased water availability and
increasing land-use change (Souza da Silva and De Moraes 2018).

3.2.3. Category 3: Integration of HEMs with other sectoral models

There is a trend of linking socioeconomic information with biophysical data.
Among the reviewed studies, 50 connected to other sectoral models such as cli-
mate, hydrological, energy, agricultural, environmental, agent-based, or economy-
wide models and use of newly available datasets (e.g., satellite observations, big
data, machine learning).

Most HEM tools have focused on connecting agriculture with water and eco-
nomics. Links include agronomic variables with surface water (Kim and Kaluar-
achchi 2016; Magombeyi and Taigbenu 2011) and groundwater (Pefia-Haro et al.
2010) models to incorporate their feedback and assess optimal resources appli-
cation; quantification of impacts of climate change on agriculture (D’Agostino
et al. 2014; Ejaz Qureshi et al. 2013; Fernandez et al. 2016; Forni et al. 2016; Liu
et al. 2017; Siderius et al. 2016) and energy production (Foster et al. 2015);
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analysis of the effects of droughts and adaptation policies (Kahil et al. 2015) on
stakeholder cooperation, water markets, and water pricing (Kahil et al. 2016);
quantification of costs for increasing groundwater pumping to replace surface
water availability (Medellin-Azuara et al. 2015); or assessment of cost of com-
pliance with ecological requirements at a river basin scale (Kuhn et al. 2016;
Nelson et al. 2016; Riegels et al. 2011).

Achieving multiple hydro-economic objectives is possible by linking economic
information with biophysical data. For example, by connecting an agricultural
model that relates land and water use with a hydro-economic stochastic model of
the Murray-Darling Basin in Australia, Ejaz Qureshi et al. (2013) concluded that
crop types will be affected differently under climate change. This outcome supports
adaptation strategies related to land-use changes or less vulnerable crop types
depending on the region (Kahil et al. 2015; Medellin-Azuara et al. 2015). Pulido-
Velazquez et al. (2013) and Lopez-Nicolas et al. (2018) developed methods to
simulate water availability and optimize water pricing policies that resulted in
higher economic benefits and efficient resource allocation over time, with com-
peting water uses. Torres et al. (2012) evaluated the impacts of minimum instream
flow regulations on agriculture of the Sdo Francisco River basin in Brazil. Results
from this work suggest that minimum instream flow regulations impact down-
stream farmer cropping options, especially during drought years, while considering
economic and environmental benefits from such regulation.

Agent-based models have also accomplished links between sectors. For ex-
ample, Yang et al. (2009) developed a multi-agent optimization model that inte-
grates human and environmental elements and incorporates the possible behavior
of water users, resulting in a more realistic system representation. In addition,
Pande et al. (2011) elucidated the interaction between hydrologic components,
water valuation, and their effects on different agents at sub-basin scales. Other
research has embarked on quantifying the value of storing water by calibrating a
hydro-economic model to fit reservoir operators behavior through historical res-
ervoir storage data (Khadem et al. 2020).

Common challenges in linking models include selecting common attributes and
data availability in similar temporal and spatial scales and tandem model proces-
sing (results from one are input to another) rather than fully coupled. An approach
to overcome these problems is parallel data collection and model development to
ensure tailored information exchange between HEMs (Kragt et al. 2011). Another
approach is when parts of a hydro-economic system (e.g., groundwater, agricul-
ture, and water markets) connect to a central structure, for example through soft-
ware libraries like Pynsim. Knox et al. (2018) describe two uses of Pynsim’s in

2340003-29



Water Econs. Policy 2023.09. Downloaded from www.worldscientific.com
by 2001:628:21f0:36:98ee:dcab: 141:c9e on 05/13/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

J. P. Ortiz-Partida et al.

which simulation hydrologic models are connected with optimization models to
minimize water deficits or identify the best location of hydropower plants.

Coupled models have also been applied to assess the water—food—energy—
ecosystem nexus (Bekchanov and Lamers 2016; Jalilov et al. 2015 2016; Yang
et al. 2016) and find a further discussion on their relationship with HEM in
Category 2.

The European Nation Water Blueprint is an example of model coupling. Water
management in the regions can be modeled together or separately. European
policies related to water use are relatively well defined, and state targets, such as
mitigating climate change, improving water quality, and maximizing social ben-
efits of water in ecosystem services. Multi-objective approaches and model cou-
pling create complex platforms to manage water-based on agricultural models
(CAPRI), land use models (LUMP), solute (fertilizer, salts, and nutrient) move-
ment (EPIC), rainfall-runoff transformation (LISFL.OOD), and biophysical models
for water quality, quantity, and hydro-economic assessments (LISQUAL) (Joint
Research Centre et al. 2012; Udias 2016).

3.2.4. Category 4. Economic valuation, marked-based policies,
and pricing policies

The goal of implementing water management policies is to achieve efficient water
allocation while maximizing benefits and considering the stochasticity of water
supplies and the institutional and infrastructural boundaries. However, water is
rarely traded in market mechanisms, making it challenging to know its price and
value in every use and across multiple stakeholders, including the environment.

Different economic and financial policies were analyzed using optimization and
simulation HEMs. Applications include estimating the value of water by obtaining
shadow prices (willingness to pay) and evaluating the impact of pricing and market
policies in multiple temporal and spatial scales while considering changes in water
availability, water demand, and environmental flows.

Water pricing as an incentive for efficient allocation or service cost recovery of
water has been studied in different basins and management contexts. In the urban
sector, Lopez-Nicolas et al. (2018) assessed a water tariff for cost recovery, an
economically efficient and equitable allocation policy in Valencia, Spain. Water
value was obtained in a scarcity-based process and used for developing an urban
block tariff. Pulido-Velazquez et al. (2013) developed a synthetic model to design a
pricing policy linked to water availability and incorporate the marginal economic
value of water that works as a scarcity signal (marginal opportunity cost) region-
wide and across multiple water users.
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Recent water valuation and pricing studies considered the uncertainty and
variability of water supplies. Khadem et al. (2018) developed an optimization
model to estimate carryover storage’s economic value in the Central Valley of
California, finding that optimal allocation of carryover water reduces costs in
interannual reservoir operations. Macian-Sorribes et al. (2015) evaluated the de-
sign of an efficient scarcity-based pricing policy using marginal recovery cost in
the Mijares basin in Spain. The authors used a stochastic programming approach to
model uncertainties in water availability. Different water policies were studied,
considering scarcity scenarios, including water pricing and water market policies
(Kahil et al. 2016).

Water markets have shown a growing interest and applications in basins with
stochastic water supplies, scarcity, and aquifer depletion problems worldwide.
HEMs have been used to evaluate their feasibility, comparing water markets
among different stakeholders. Surface water transfers and groundwater conserva-
tion between agricultural and urban sectors were studied for farm profit maximi-
zation farm profits, urban water reliability, and cost minimization in Brazil (Zhu
et al. 2015). Water variability, climate, and demand changes presented the water
system’s most significant uncertainties and were considered to estimate the ef-
fectiveness of water markets, as shown by Reddy et al. (2015), using a risk-based
HEM. The transaction cost component of water markets institutional framework
may affect the feasibility of water markets accounting for their effect on the benefit
of water use. Erfani et al. (2014) studied these, considering a weekly transaction
among multiple sectors and different water availability scenarios.

Market-based mechanisms were studied to achieve sustainable groundwater use
for agriculture, considering the stochastic nature of the aquifer dynamics and water
quotas (Pereau et al. 2018) and interacting with water banking during drought
periods and different management scenarios (Ghosh et al. 2014). Market-based
approaches consider multiple benefits and water efficiencies, such as environ-
mental flows, water quality, ecosystem services, and carbon markets. Water rights
trading can bring opportunities to increase environmental flows and their value
(Bekchanov et al. 2018) and water rights or licenses should be designed in a way
that accommodates trading and protects environmental flows (Erfani et al. 2015).
Huang et al. (2020) developed a risk-based HEM to evaluate the tradeoff between
groundwater utilization for urban, industry, and environmental protection to value
groundwater ecosystem services. A study in the Kelani river, Sri Lanka, combined
a HEM with a water quality model in an optimization approach to evaluate policies
that account for water pollution and water distribution (Gunawardena et al. 2018).
Settre et al. (2019) analyzed joint water market and carbon market policies of
carbon sequestration and environmental flows allocation, using a dynamic HEM,
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which included carbon dynamics, a carbon credit value. Other HEM applications
include water footprint and virtual water trading (White et al. 2015) and pricing
hydroelectric energy considering the opportunity cost of water (Ilak et al. 2014).

In some regions, water markets can increase water supply systems’ flexibility
and mitigate climate change impacts. For example, a study in the Murray-Darling
Basin, Australia, quantified that under a prolonged drought scenario, water trading
could reduce agricultural losses by 7%, a considerable amount for a $15 billion
industry in the region (Jiang and Grafton 2012).

Adapting to new water sources is among the most important water scarcity
adaptations, such as desalination. HEMs have been used to quantify the economic
benefits of additional water supply for agriculture from water desalination as a
strategy to mitigate drought and environmental impacts in the Central Valley of
California, demonstrating that such technology can offset economic losses. How-
ever desalination costs must be decreased and energy sources need to be clean and
renewable to be economically and environmentally feasible (Welle et al. 2017).

3.2.5. Category 5: Addressing uncertainty, risk, and robustness

HEM uncertainty takes different forms, including hydroclimatic variables like
precipitation and streamflow, and intangible and seemingly random variables, like
prices or human behavior. Neglecting uncertainty can have unintended con-
sequences and ultimately decrease water systems reliability and increase cata-
strophic event risk (Arefinia et al. 2021). Over the last decade, HEMs have
integrated uncertainty into a range of applications such as non-point pollution of
groundwater (Llopis-Albert et al. 2014; Molina et al. 2013; Pefia-Haro et al. 2011),
water storage for hydropower operations (Weibel and Madlener 2014) and energy
markets (Pinheiro Neto et al. 2017), risk assessment (Arjoon et al. 2014; Kahsay
et al. 2019), future water availability (Hassanzadeh et al. 2016), and development
of robust operations policies for water planning and decision making (Ermolieva
et al. 2021; Groves et al. 2019; Ortiz-Partida et al. 2019). In many of these studies,
climate change is a leading motivator for uncertainty integration.

Uncertainty can be seen as the range of variability of multiple variables that
conform to a hydro-economic system. To incorporate such variability into models,
approaches will include stochasticity in model input variables to represent their
seemingly random behavior. Randomness in HEM stochastic optimization enters
problems in several ways: through stochastic (exogenous or endogenous) costs and
prices, stochastic resource (e.g., water, land, biomass) availability constraints,
random occurrence of exogenous natural disasters depleting resources and assets,
and stochastic endogenous events (systemic risks) induced by decisions of various
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agents. Stochastic variables can be characterized by probability distribution
(parametric or nonparametric) functions or represented by probabilistic scenarios.
In the presence of stochastic parameters and risks, the stochastic parts in dynamic
hydro-economic systems’ optimization rely on stochastic dynamic programming
(SDP) (Fosso et al. 1999; Gjelsvik et al. 2010) or stochastic dual dynamic pro-
gramming (SDDP). The SDDP approach was successfully applied to develop
reservoir operation policies for multi-reservoir systems (Pereira and Pinto 1991;
Tilmant and Kelman 2007) and later extended and applied to the Jucar basin in
Spain to explicitly include stream-aquifer interactions (Macian-Sorribes et al.
2017).

Modeling approaches visualize how international cooperation increases resil-
ience and develop more robust water and energy systems (Jalilov et al. 2015; van
der Zwaan et al. 2018). These transboundary benefits include increased electricity
production, agricultural production, and flood damage control (Amjath-Babu et al.
2019). While transboundary cooperation may benefit all the countries involved,
politics may hinder the process. For example, current water governance mechan-
isms in the Indus River Basin make it difficult to adapt to changing climate
conditions, resulting in economic repercussions for the basin under high and low
flow conditions (Yang et al. 2014). Another example is the State of California in
the United States, where out-of-state or even out-of-county water transfers or
groundwater sales are not allowed (Howitt 2012).

Quantifying uncertainty ultimately helps assess risk and support stakeholders in
the decision-making process (Yang et al. 2016), develop large-scale (Kahil et al.
2018) and small-scale (Gohar et al. 2019) strategies, and assist in climate change
adaptation and mitigation.

4. Limitations

Recent HEMs show innovations in forecast system changes under multiple water
availability and demand scenarios. These models assess the impacts of water
scarcity by lowering water availability as a proxy for climate change effects,
changing yearly average precipitation, and downscaling hydrologic simulations.
Such approaches may be insufficient as they do not consider other metrics relevant
for water management, such as changes in precipitation as rain vs. snow, evapo-
transpiration, precipitation in extreme events, duration of dry and wet seasons, and
frequency of dry and wet years (Persad et al. 2020).

The use of HEMs for operational purposes is limited by their resolution and by
the integration with climate models. There is a tradeoff between high and low
resolution for computational costs and accuracy, which means that large-scale
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models can be useful for planning but not for operation and that single extremes
that can be identified at a daily scale (such as uncommonly hot days or days with
extreme precipitation or streamflow) may be lost when using monthly or yearly
averages. Climate and weather forecasting models can be coupled with hydrologic
models to produce more accurate economic results by using such techniques as
reforecasting (Fernandez-Bou et al. 2015) for example, for the cost of energy in
hydropower generation in Brazil.

HEMs often lack integration of important values such as ecosystem functions
and services, indirect costs of intangible damages (e.g., casualties in flood events),
and implications of new technologies. Many of these limitations are caused by
detail loss due to increasing spatial resolution and broad assumptions about in-
frastructure and institutional frameworks.

Stakeholders’ behavior and the role of human responses to policy intervention
are often oversimplified in HEMs (Essenfelder et al. 2018). For example, the
optimization of regional planning models assumes the best action for everyone in
the basin often without consulting the stakeholders’ priorities for decision-making.
Advanced decision-making analysis is necessary to model the behavior of im-
portant actors and stakeholders, rather than assuming preference.

Another limitation of many HEMs is the simplistic relationship between surface
water and groundwater. Groundwater has traditionally been considered a buffer to
compensate for the lack of surface water. However, it is necessary to incorporate
groundwater as a resource to be optimized and maintained for future use to avoid
overdrafting basins. More curated datasets and hydrogeological parameters can
help develop more reliable models that include groundwater levels and flows to
overcome these and other limitations of HEMs.

There is often a disconnect between modelers and stakeholders. HEMs can
improve through co-development with stakeholders (Girard et al. 2015). Including
the most vulnerable stakeholders in decision-making and incorporating their pri-
orities into policy can create more robust solutions that adapt to and mitigate
climate change (Fernandez-Bou et al. 2023 2021; Fernandez-Bou et al. 2021).
Unequal distribution of gains and losses among riparian countries disincentivizes
the efficient sharing of existing water resources (Girard et al. 2015).

5. Moving Forward in HEM

This review underlines the diversity of water system needs around the globe and
the variety of HEM approaches. A primary outcome from this review is the need to
develop a portfolio of adaptation strategies together with investment mechanisms
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to enhance global water—food—energy—ecosystems security. It is also necessary to
better represent ecosystems, moving away from the minimum instream flow
requirements approach and towards a functional flows approach. Water quality is
another essential element often ignored in HEM.

Sustainable groundwater use is becoming a common topic. Studies highlight the
importance of policies that protect aquifers, as they provide a buffer in the water
supply during dry periods when surface water is insufficient to fulfill demands.
Given the increasing complexity of HEMs, machine learning techniques can be a
computationally inexpensive alternative to model biophysical systems that cannot
be easily incorporated into optimization and management models.

The field of HEM would benefit from a higher temporal resolution (e.g., sub-
monthly time-steps) to better capture nuances from hydroclimatic variables rele-
vant to water resources management and that are shifting due to climate change
(e.g., maximum three-day precipitation, minimum daily flow, floodplain inunda-
tion time). Low spatio-temporal resolution leads to HEMs that are useful for
planning. Developing models with higher spatio-temporal resolution that are
coupled with atmospheric models can produce more HEMs that can be used for
operational purposes. Coupling climate and meteorological models with HEMs can
also produce much more accurate hydro-economic forecasts.

Hydro-economic studies largely focus on biophysical and economic indicators
and often overlook stakeholders’ preferences and perspectives. This is partly
explained by the large-scale and technical nature of HEMs. However, more robust
integration of social components may increase trust in and adoption of HEMs by
local stakeholders. Social aspects intrinsic to water systems, such as health and
equity, are still a relevant gap in knowledge.

Future HEMs should incorporate additional ecosystem-related metrics (e.g.,
floodplain inundation time, peak streamflow, or consecutive days without precip-
itation during rainy seasons) that have implications for ecosystem restoration,
managed aquifer recharge, and precision agriculture, among others.

Finally, our analysis shows that multiple studies encourage international co-
operation and coordination to increase water and economic security, even under
future water scarcity scenarios. Cooperation in water resources is the most equi-
table and most economically feasible option to thrive as a united human society.
Transboundary partnerships and stakeholder participation in decision-making and
local solutions can help to better respond to the broader global issues of natural
resource tradeoffs and sharing.
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