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The value of exotic wheat genetic resources for accelerating grain yield gains is largely unproven and 
unrealized. We used next-generation sequencing, together with multi-environment phenotyping, to 
study the contribution of exotic genomes to 984 three-way-cross-derived (exotic/elite1//elite2) pre-
breeding lines (PBLs). Genomic characterization of these lines with haplotype map-based and SNP marker 
approaches revealed exotic specific imprints of 16.1 to 25.1%, which compares to theoretical expectation 
of 25%. A rare and favorable haplotype (GT) with 0.4% frequency in gene bank identified on chromosome 
6D minimized grain yield (GY) loss under heat stress without GY penalty under irrigated conditions. More 
specifically, the ‘T’ allele of the haplotype GT originated in Aegilops tauschii and was absent in all elite 
lines used in study. In silico analysis of the SNP showed hits with a candidate gene coding for isoflavone 
reductase IRL-like protein in Ae. tauschii. Rare haplotypes were also identified on chromosomes 1A, 6A 
and 2B effective against abiotic/biotic stresses. Results demonstrate positive contributions of exotic 
germplasm to PBLs derived from crosses of exotics with CIMMYT’s best elite lines. This is a major impact-
oriented pre-breeding effort at CIMMYT, resulting in large-scale development of PBLs for deployment in 
breeding programs addressing food security under climate change scenarios.
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The twentieth century witnessed the impact of traditional breeding methods in enhancing genetic gains for wheat 
grain yield (GY)1. In the pre-Green Revolution period, breeding efforts relied on selection from locally adapted 
landraces or traditional cultivars, but a paradigm shift occurred with the extensive use of semi-dwarf wheat cul-
tivars beginning during the Green Revolution. Further, the development and use of synthetic wheats in breeding 
brought diverse alleles from the tertiary gene pool into varietal pipelines2,3. These and other advances in breeding 
enabled annual genetic gains for GY between 0.6 and 1.0 percent for varieties released between 1994 and 20104. 
However, rates of gain must increase to meet the food and nutrition demand of our growing global population 
under the likely, unfavorable climate change scenarios.

The impact of landraces, wild relatives and synthetic wheats on genetic gains for GY, by providing resistance 
against biotic stresses, and to a much lesser extent against abiotic stresses, is well recognized5–8. Nevertheless, 
breeders are generally reluctant to use exotic genetic resources because of the long-term commitment required 
to identify useful, novel diversity and introgress it into well-adapted elite cultivars while reducing the effects of 
undesired, linked genes. A commonly reported, intriguing analogy, is that the “bad” parent of good × bad crosses 
often contributes one or more QTL with favorable effects on the trait of interest9. Approximately 800,000 wheat 
accessions, including landraces and synthetics, exist in germplasm banks globally as reservoirs of useful alleles for 
breeding, but only a very small proportion of these have been used in varietal improvement programs10. Low-cost 
high-density genomics and growing bioinformatics capacity are increasing the feasibility of identifying and using 
the “diamonds in the rough” within these genetic resources.

Pre-breeding, or the development of “half-way” germplasm introgressing exotic (unimproved) into elite ger-
mplasm, plays a key role in broadening the genetic base of breeding germplasm pools. Pre-breeding programs 
that create freely available, pre-competitive, bridging or intermediate germplasm by introgressing desirable genes 
from exotic into elite lines empower breeding programs to use germplasm bank diversity cost effectively. Realizing 
this, a few wheat pre-breeding projects have been launched11,12. CIMMYT’s Seeds of Discovery13 is an innovative 
project initiated to use next generation genome sequencing technology, envirotyping and analytical methods to 
characterize and enhance the use of germplasm bank accessions14–16. This is the third major germplasm infusion 
effort at CIMMYT that has resulted in strategic development of large-scale pre-breeding germplasm (Fig. 1) fol-
lowed by its deployment through breeding pipelines. Useful and novel diversity for stress tolerance (heat, drought, 
yellow rust and powdery mildew) and quality (zinc concentration) was introgressed to lines derived from crosses 
of exotics with CIMMYT’s best elite wheat germplasm. Concomitantly, this research identified rare haplotypes 
effective against abiotic or biotic stresses contributed from exotics through haplotypes-based genome wide asso-
ciation study.

Results
Analysis of Exotic Genome in Pre-Breeding Lines (PBLs). Haplotype block analysis for the complete set 
of 984 PBLs, performed by localizing the genome-wide SNPs to a high-density consensus map (available at http://
www.diversityarrays.com/sequence-maps), resulted in 361, 115 and 367 haplotype blocks (HBs) in pre-breeding 
lines (PBLs), elite and exotic parents, respectively, based on average linkage disequilibrium (LD) distance of 5 cM. 
Supplementary Table 1 describes haplotype variation among PBLs, exotic and elite parental lines. There were 
fewer and larger HBs in elite compared to exotic parents and PBLs on all chromosomes except 6D and 7D. For 
example, a series of 36 SNPs on chromosome 1A were grouped in one very large HB (~67.3 cM) in the parental 
elite lines, these SNPs were distributed into 9 HBs (2–10 cM, 2–6 SNPs) in the PBLs (Supplementary Fig. 1).  

Figure 1. Proposed and reported wheat pre-breeding schemes. Germplasm bank accessions are genotyped 
while field and laboratory phenotyping is performed for various traits using sub-sets or core sub-sets of 
accessions. Genotypic and phenotypic information are used to form core subsets for phenotyping. Once trait 
donors are identified, these are used for crossing with elite lines (exotic/elite1//elite2), followed by selection 
under heat, drought and disease conditions during TC1F2 to TC1F5 generations. The advanced genotypes are 
distributed (these are currently available) on request to researchers across the world.

http://www.diversityarrays.com/sequence-maps
http://www.diversityarrays.com/sequence-maps
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Haplotype block-by-block comparison by chromosome revealed that 58 (16%) of the 361 HBs identified in PBLs 
originated from or were specific to their exotic parents. Of the 58 exotic-specific HBs in PBLs, 11 (19%) were pos-
itively associated with agronomic traits and disease resistance [Fig. 2(I)]. Elite-specific HBs were not estimated in 
PBLs due to the small number of elite parents used.

SNP Allele Frequency Analysis for PBLs from 10 Crosses. In another approach to investigate the 
exotic parent contribution to PBLs, SNP allele frequencies were evaluated for 278 PBLs derived from 10 crosses, 
each with progeny number ≥16, involving 9 different exotic and 7 elite parents. Of the homozygous PBL alleles 
that could be traced to either exotic or elite parents, an average of 23.4% were inherited from their exotic par-
ents and 65.9% from one of their elite parents. Exotic introgression patterns varied among chromosomes 
(Supplementary Table 2, Supplementary Fig. 2). Most of the SNP alleles in the PBLs were present in both their 
respective exotic and elite parents; however, of the 24.5% (11.3–47.4%) for which parental origin could be deter-
mined, 25.1% (18.9–33.9%) originated from the exotic parent, 70.8% from one or both elite parents and 4.1% 
were heterozygous. If we include 6.9% missing markers in these calculations, an average of 23.4% of SNP markers 
were inherited from their exotic parent, 65.9% from elite parents and 3.8% were heterozygous. These frequen-
cies correspond closely with expectations of 25% exotic and 75% elite alleles for a TC1F5 (top cross) population. 
Supplementary Fig. 2 illustrates exotic- and elite-specific imprints in genomes of PBLs in the analyzed crosses. 
Chromosome 2A, for example, had a region where alleles appeared to be preferentially inherited from the elite 
parents, while chromosomes 3B and 5B had segments where alleles from exotic parents prevailed in the PBLs. It 
will be interesting to study these genomic regions in depth to increase our understanding of preferential accumu-
lation of exotic and elite specific alleles in these PBLs.

Haplotype-Trait Associations. The genome wide association (GWA) analysis identified HBs significantly 
associated with grain yield (Table 1 and Supplementary Tables 3 and 4) and disease resistances under multiple 
environments (Supplementary Table 5A,B). Among HBs that had significant effects on grain yield and biomass 
across multiple drought, heat and irrigated sites, HBs 10.5, 18.1 and 19.24 were of particular interest because they 
had significant effects at 7 to 11 of the 20 trait evaluation instances, and were not associated with days to heading 
(Supplementary Table 3). On the other hand, HB17.5 also had multiple instances of significant association with 

Figure 2. (I) Total number of haplotype blocks (HBs), number of HBs introgressed from exotic parents, 
and number of functional exotic-specific HBs (associated with traits investigated in the study: diseases, heat, 
drought etc.) on each chromosome for the 984 pre-breeding lines (PBLs). (II) Average grain yield (Kg/ha) and 
frequency (%) of PBLs for each haplotype, AT, AG, and GG of HB1.28 grown under irrigation [A] or drought 
stress [B] at Ciudad Obregon, Mexico and Karnal, India, respectively. Y-axis = grain yield, X-axis = haplotype 
classes. (III) Average grain yield (Kg/ha) and frequency (%) of PBLs with each haplotype, GT, GC and AC of 
HB18.1 grown under heat stress at Ciudad Obregon, Mexico [A], and drought [B], and irrigated [C] conditions 
at Karnal, India. Y-axis = grain yield; X-axis = haplotype classes. (IV) Mean yellow rust disease severity and 
frequency (%) of PBLs with haplotypes CC, GC and GG of HB5.23. The PBLs were evaluated in Ludhiana, 
India during 2015 [A] and 2016 [B]. Y-axis = disease severity (%), X-axis = haplotype classes. (II–IV) are for 
evaluation of a sub-set of 134 of the 984 PBLs.
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grain yield and biomass, but was also associated with days to heading, suggesting that maturity may have contrib-
uted to escaping heat or drought stress. Three HBs, HB16.10, HB18.2 and HB19.3 were associated with grain yield 
under heat stress, but also with days to heading (Supplementary Table 3).

On chromosome 2B, a rare haplotype of HB5.23, GG (present in 14% of PBLs), was associated with yellow rust 
(Puccinia striiformis f. sp. tritici) resistance in both years of evaluation [Fig. 2(IV)]. For powdery mildew (Blumeria 
graminis f. sp. tritici – Bgt), two genomic regions on 5B and 6B had significant effects (Supplementary Table 5B). 
A rare haplotype of HB14.36 (5B) was identified in 6.7% of PBLs, and 90% of the lines with this haplotype were 
resistant or moderately resistant to powdery mildew. Similarly, a rare haplotype of HB17.11 (6B) was identified in 
10.5% of PBLs, and 83% of the lines with this haplotype were resistant or moderately resistant to powdery mildew.

Characterization of Rare Haplotypes. Figure 2II–IV shows the positive effects of rare haplotypes of 
HB1.28 (chromosome 1A) and HB18.1 (chromosome 6D) on GY and of HB5.23 (chromosome 2B) on yellow rust 
resistance. The SNP alleles of the rare haplotype of HB5.23 were derived from exotic parents. For powdery mildew, 
two rare haplotypes on chromosomes 5B (from exotic parent) and 6B (from elite parent) had significant effects 
(Supplementary Table 5B). Figure 3 presents the effect of rare haplotype of HB16.10 (6A) on GY under heat stress.

The HB5.23, located on chromosome 2B and associated with yellow rust resistance has a size of ~32 Mbp and 
contains 279 high confidence genes including 10 with nucleotide-binding and leucine-rich repeat (NB-LRR) 
domains known to interact with pathogen effectors to induce defense responses. Of the GY-associated HBs; 
HB10.5 spanned ~13.8 Mbp containing 61 genes, HB16.10 spanned ~28.5 Mbp containing 138 genes and 
HB18.1 spanned ~2.3 Mbp containing 48 genes. Using Knetminer17, we identified 4, 14 and 6 candidate genes 
(Supplementary Table 6) for haplotypes HB10.5, HB16.10 and HB18.1, respectively.

Figure 4 shows that the favorable and rare haplotype GT of the block HB18.1, associated with grain yield 
advantage under heat stress, inherits the ‘T’ allele from Aegilops tauschii via synthetic pedigree. Further, this 
SNP (belonging to clone ID 1067078) showed similarity with a candidate gene Traes_6DS_84A4D85F.1 through 
BLAST analysis. This gene is homologous to a rice gene LOC_Os06g27770.1 coding for isoflavone reductase. 
Phylogenetic analysis revealed a high level of similarity of Traes_6DS_84A4D85F.1 with the gene F775_22033 
in Ae. tauschii, also coding for isoflavone reductase IRL-like protein (Supplementary Fig. 3). Analysis of allelic 
variants of this gene showed eight missense mutations (causing deleterious amino acid changes) with SIFT score 
<0.05 in the coding region (Supplementary Fig. 4), of which seven were SNPs and one was a 2 bp substitu-
tion (Supplementary Table 7). In rice, isoflavone reductase-like gene (OsIRL) has been shown to be involved in 
homoeostasis of reactive oxygen species18. In wheat, detailed physiological dissection of this gene is underway to 
identify the underlying mechanism conferring heat tolerance.
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HB1.28 1A ** ** ** **

HB2.13 
(Exotic 
HB)

1B ** **

HB4.1 2A ** ** ** ** ** ** **

HB4.13 2A ** ** ** **

HB5.3 2B ** ** ** ** **

HB10.5 4A ** ** ** ** ** ** ** **

HB10.7 4A ** ** ** **

HB14.31 5B ** ** ** ** **

HB16.10 6A ** ** ** ** ** **

HB17.1 
(Exotic 
HB)

6B ** ** **

HB17.5 6B ** ** ** ** ** ** ** **

HB17.6 6B ** ** ** ** ** **

HB18.1 6D ** ** ** ** ** ** ** ** ** ** **

HB18.2 6D ** ** ** ** ** **

HB19.3 
(Exotic 
HB)

7A ** ** ** **

HB19.24 7A ** ** ** ** ** ** **

Table 1. Consistent genomic regions (haplotype blocks) for grain yield and related traits. **P ≤ 0.01; Chr: 
Chromosome, DRT: Drought, HT: Heat, IRGT: Irrigated; Obregon: Ciudad Obregon, Mexico, BISA: Borlaug 
Institute of South Asia, India, PAU: Punjab Agriculture University, India, IIWBR: Indian Institute of Wheat and 
Barley Research, India. Two pre-breeding germplasm populations of 984 and 134 accessions evaluated across 
the locations in crop seasons of 2016 and 2017. The 134 accessions were part of 984 set.
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Pre-Breeding Lines for Use as Trait Donors. Supplementary Table 8A,B provide grain yield data for the 
highest-yielding PBLs and elite checks grown under heat and drought stress conditions during two seasons. Five 
PBLs originating from five crosses had GY at par with the best checks Baj#1, and Vorobey under drought stress 

Figure 3. Haplotype block (HB) map of chromosome 6A in exotic parents (I), pre-breeding lines (PBLs) (II) 
and elite parents (III). Each haplotype is displayed in a HB with its population frequency indicated on the right. 
The value shown below and between HBs represents multi-allelic D’, which indicates the level of recombination 
between the two blocks. HBs partly enclosed in blue or black indicate introgressions from exotic or elite parents 
into the PBLs, respectively. HBs enclosed in red are from exotic and had significant effects for the trait. (IV) 
Allelic effects of HB16.10 in the PBLs: haplotype GAGT produced grain yield advantage under heat-stress in 
2015 [IV-B] and 2016 [IV-C], with no disadvantage under irrigated conditions [IV-A] at Ciudad Obregon, 
Mexico. Haplotypes and their frequency (%) among 984 PBLs are plotted on the X-axis.

Figure 4. Average grain yield (Y-axis) and frequency (%) of PBLs with alleles AC, GC and GT (X-axis) for 
HB18.1. PBLs with haplotype GT had highest grain yield across 2016 irrigated (A-I), 2016 heat-stress (A-II); 
and 2017 heat-stress (A-III) at Ciudad Obregon, Mexico. (A-IV): The origin of the yield-increasing haplotype 
allele, GT, was from synthetics that acquired the ‘T’ SNP allele from Aegilops tauschii. The favorable GT 
haplotype was present in Ae. tauschii, synthetics and PBLs, and was absent in elite parents of the 984 PBLs.
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(Supplementary Tables 8B). However, none of the PBLs significantly out-yielded the tolerant checks in two years 
consecutively. This points to high genetic potential of checks as compared to PBLs. To dissect the genomic regions 
providing high yield advantage under drought and heat stresses particularly in Baj#1, we have initiated genetic 
dissection studies. Preliminary analysis has identified a genomic region on 4A, which is specific to Baj#1 and 
Baj#1-derived lines (results not shown).

PBLs with resistance to yellow rust and powdery mildew are shown in Fig. 5A,B. Thirteen PBLs had yellow 
rust symptom score ≤5% (0 and 100% being completely resistant and susceptible, respectively), and six PBLs 
had powdery mildew symptom scores ≤2.5 on a 0–9 scale (0 and 9 being completely resistant and susceptible, 
respectively).

Six PBLs had greater (p < 0.05) Zn concentration than the best check line, Reedling#1 in the two years’ eval-
uation. One PBL (GID: 7640819, CROC_1/AE.SQUARROSA (481)//KACHU/3/BAJ #1) had 18 and 17 µg g−1 
more Zn than the check in years 1 and 2, respectively (Fig. 5C). The Pearson’s correlation of Zn concentration in 
grain with grain yield was r = −0.21 (p < 0.05), which was consistent with previous reports of negative association 
between these traits19.

Discussion
Directional selection, either natural or through breeding, increases the frequency of favorable alleles resulting 
in the formation of conserved haplotypes with strong surrounding linkage disequilibrium20. Wheat has been 
exposed to intense artificial (through breeding) and natural selection21 since its domestication, resulting in large 
HBs as observed for the elite germplasm evaluated herein. These HBs may inadvertently fix unfavorable alleles 
linked with selected genes; for example, as demonstrated by Voss-Fels et al.22 for root traits negatively affected 
by linkage drag with the selected Vrn gene for heading date. Thus, HBs prevalent in elite germplasm may need to 
be broken to introduce and capture valuable diversity within them that may otherwise remain undiscovered and 
unused. The pre-breeding strategy reported here successfully disrupted many large HBs present in the elite lines 
(e.g. Supplementary Fig. 1). Bevan et al.23 have described how the assembly of rare, favorable haplotypes, such as 
those identified herein, may contribute to near-future breeding strategies.

As per Mendelian genetics, in a three-way cross of exotic with two elite parents, genomic contribution of 
exotic is expected to be approximately 25%. To quantify exotic contribution here, haplotypes maps of parental 
exotics and PBLs were compared and two independent calculations were made: first, using 156 PBLs and 156 
exotics, and second, using all 984 PBLs and all 244 exotics. The genomic contribution of exotics in the first and 
second method was 15.2% (data not shown) and 16.1% [Fig. 2(I)], respectively. The first analysis was done to keep 
same size of the exotic and PBL populations, thereby eliminating possible confounding effect due to sample size 
differences. The fact that these estimates are below the theoretical 25% is not unexpected because these estimates 
are confounded and reduced by any HBs that may have been present in both exotic and elite parents. A third and 
traditional approach, wherein frequencies of exotic- and elite-specific SNP alleles were determined in 10 selected 
crosses (like in bi-parental populations), estimated the exotic genome contribution to PBLs very close to the 
theoretical 25%.

Discovering Rare Haplotypes. The identification of rare haplotypes in HBs on chromosomes 6A and 6D 
associated with GY across environments, and on chromosome 2B for yellow rust resistance demonstrated the 
value of crosses with exotic germplasm (Figs 2 and 3). The GY advantage associated with favorable alleles in HBs 
8.22, 18.1, and 19.24 may be due to increased biomass as these showed positive associations with both biomass 
and GY (Supplementary Table 3). Detailed dissection of these HBs revealed that HBs 8.22 and 19.24 increased 
biomass without affecting harvest index, and hence might have positive effect on other yield component(s). A 
closer HB to HB18.1 on chromosome 6D i.e. HB 18.2 (within 5 cM of HB18.1) showed association with thousand 
kernel weight (TKW) and a minor haplotype AC (present in 6% of PBLs) was favorable resulting in an average 
TKW of 47.6 g (4.5 to 6% more TKW than remaining two haplotypes; Supplementary Fig. 5). Thus, HB18.1 seems 

Figure 5. (A) Powdery mildew disease symptom scores (0 = resistant to 9 = susceptible) and (B) Yellow rust 
severity (%) for 134 pre-breeding lines PBLs. Green and red bars indicate resistant and susceptible PBLs, 
respectively. (C) Y-axis, grain yield (Mg/ha, black triangles) and zinc content [(µg g−1 × 0.1), orange (2015) and 
grey (2016) dots] for 8 PBLs and 2 check lines (X-axis). PBLs 6 and 8 had similar grain yield but significantly 
higher zinc content as the checks, whereas PBL 4 had very high zinc content (up to 18 µg g−1 higher) but low 
grain yield. LSD for zinc content in 2015 and 2016 was 6.8 and 6.3 µg g−1, respectively.
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to increase GY via increase in both biomass and TKW. These HBs did not show any association with days to 
heading (independent of confounding effects of days to heading), they may be very useful for breeding programs.

It is noteworthy that the rare haplotype (GT) of HB18.1, which had a significant positive effect on biomass 
and grain yield of PBLs under drought and heat stresses, was inherited from Ae. tauschii via synthetic wheat (Ae. 
tauschii × Triticum durum) parents. More specifically, the ‘T’ allele of haplotype GT was absent in all elite parents 
studied here, whereas it was present in the exotic (synthetic) parents and their derived PBLs. Following this dis-
covery, we screened 62,000 previously sequenced CIMMYT germplasm bank accessions for the presence of this 
favorable haplotype and found it in only 262 (0.42%) accessions. The majority of germplasm bank accessions with 
the ‘T’ allele were synthetic-derived lines such as Sokoll (released in 1997). All of the PBLs with the ‘T’ allele was 
susceptible to stem rust (Puccinia graminis f. sp. tritici), which may be coincidental or could suggest that selec-
tion for stem rust resistance led to negative selection of this haplotype. This would be similar to the inadvertent 
selection for the Lr67 susceptible allele, which was associated with intense selection for RhtD1b semi-dwarf gene 
in CIMMYT’s elite germplasm24.

To follow-up on the candidate gene within HB18.1 (that affected grain yield and biomass under heat and 
drought stress) (Fig. 4), we have converted seven missense mutations with a SIFT score <0.05 to KASP assays. 
Future work will test whether natural variations in the gene are associated with grain yield and yield components 
under heat stress conditions. Supplementary Table 9 lists rare haplotypes inherited from exotics that are associ-
ated with traits investigated in the study and are useful for trait improvement programs.

The rare and favorable haplotype of HB5.23 for yellow rust resistance had a frequency of 19% in 62,000 ger-
mplasm bank accessions investigated. Ten NBS-LRR genes, which are well-known disease resistance proteins in 
plants25, were identified within the HB5.23 intervals. Most of these genes were located in a small cluster, similar 
to those observed in Arabidopsis26 and rice27, with 5 located within a 115 Kbp region and 3 within a sub-cluster 
of 22 Kbp. Nine genes viz. Yr5, Yr7, Yr27, Yr31, YrV23, YrSp, YrQz, YrTp1, and YrCN1928 showing resistance to 
multiple yellow rust strains have previously been mapped on chromosome 2B. Most of these known yellow rust 
genes, except Yr5, are not effective under Punjab conditions, where the association reported herein was detected. 
Molecular marker analysis confirmed that HB5.23 is not linked with Yr5 (data not shown), and warrants an 
in-depth analysis to determine the novelty of the identified gene.

Trait Value of Pre-Breeding Germplasm. Incorporation of new variation into elite materials broadens 
the genetic base and results in novel allele combinations for evaluation and selection in breeding programs. The 
PBLs described herein harbored gene(s) or allele(s) for disease resistance (Supplementary Tables 5A,B), for GY 
advantage under heat and drought (Supplementary Tables 8A,B), and for high zinc concentration (Fig. 5C). Our 
results indicate that the exotic parents contributed useful diversity for prioritized (drought and heat tolerance) 
and un-prioritized (zinc content) traits. The baseline grain Zn content among commercial varieties is generally 
25 ppm, and +12 ppm is the breeding target to enhance grain Zn in elite wheat lines to have nutritional impact. 
We identified lines with much higher Zn content than checks (Fig. 5C). These lines are being used as parents in 
breeding programs. Particularly, 2 lines that showed even yield at par with the best checks (Fig. 5C) are being 
tested in advance yield trials.

Wheat Pre-Breeding for Impact. Conventional way to utilize germplasm bank accessions is to identify 
useful trait donors and then use them in pre-breeding. This approach is successful to improve specific trait and 
are being used in most breeding programs. However, in this investigation, exotics alleles were first brought into 
elite backgrounds and then useful alleles were selected. We pursued a three-way cross strategy (exotic/elite1//
elite2) to generate PBLs, in a way so that each PBL possessed approximately 25% of the exotic and 75% of the elite 
genomes at an early stage. Therefore, exotic alleles were incorporated into elite backgrounds even before their 
trait values were identified. This strategy enabled investigation of greater number of genetic variants at a time and 
also allowed recombination between exotic and elite genomes to be exploited for genetic improvement of elites. 
Further, bulk selection in subsequent segregating generations (TC1F2 to TC1F5) helped in capturing maximum 
useful diversity. In addition, HB analysis suggests that this strategy retained rare and useful allelic variation. The 
simultaneous evaluation of the derived germplasm at multiple locations ensured minimum loss of useful diver-
sity, identify useful, and novel diversity into well-adapted regional elite cultivars. The agronomic competitiveness 
of many PBLs with elite check lines further indicates that this approach addressed the bottlenecks of undesirable 
drag, possibly by breakage of haplotype blocks and thereby selection of useful alleles or interaction of exotic with 
elite alleles.

The ‘Seeds of Discovery’ project has used more than 1,000 exotic accessions to develop PBLs that have entered 
product pipelines in several breeding programs in India, Pakistan, UK, Brazil, Kenya, Australia, Canada Turkey, 
and Mexico (Supplementary Fig. 5C). A wheat pre-breeding pipeline (Supplementary Fig. 7) has been estab-
lished in which these germplasm materials are being shared with researchers across the world in the form of the 
International Wheat Pre-breeding Nurseries (IWPN). Three IWPNs have been distributed and forthcoming will 
be available in coming years.

Conclusion
Numerous publications have emphasized the importance of pre-breeding and gene bank use but seldom have 
made an effort practically. The present research elaborates the exhaustive efforts taken by SeeD (starting with 
400,000 initial segregating pre-breeding lines) to bring in the untapped diversity of wheat exotics in gene bank 
into PBLs. CIMMYT provided first research breakthrough by providing semi-dwarf materials to the global 
research community. Followed by this, second generation germplasms were provided by CIMMYT i.e. synthet-
ics. This is the third major impact-oriented germplasm infusion effort that has resulted in strategic development 
of large-scale pre-breeding germplasm (Fig. 1) followed by its deployment through breeding programs. Further, 
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the use of high-density genotyping, in combination with multi-location phenotyping for a set of agronomic and 
stress tolerance traits, enabled the quantification of significant and positive genomic contributions from exotic 
wheat germplasm to progenies of their three-way crosses with pairs of elite wheat lines. The three-way crosses, 
followed by mild selection for essential agronomic traits during generation advancement, effectively captured 
many minor haplotypes from exotic germplasm bank accessions in the resultant progeny PBLs. The donors iden-
tified for heat, drought, and disease resistances, and for enhanced grain zinc concentration (up to 58 ppm), along 
with rare exotic haplotypes associated with the traits, demonstrated the important role that exotic germplasm 
can play in improvement of wheat elite lines globally. Under the worsening climate change scenarios and the 
anticipated threats of new emerging diseases for instance, wheat blast emergence in Bangladesh, the bridging 
germplasm created here can serve as a handy germplasm for both screening resistance donors and identification 
of candidate genes.

Materials and Methods
Twenty-five elite CIMMYT wheat lines were used for developing pre-breeding germplasm. These 25 elites were 
either released varieties (Supplementary Table 10A) or performed well in multi-location evaluation trials. These 
genotypes have moderate to high levels of resistance to leaf and yellow rust and are widely adapted to different 
environmental conditions (personal communication, Ravi Singh CIMMYT).

Around 1,711 exotic accessions from CIMMYT’s germplasm bank, including 893 synthetic wheats (developed 
at CIMMYT by crossing durum wheat (T. turgidum subsp. durum) or emmer wheat (T. dicoccum) with diverse 
Ae. tauschii accessions), 784 landraces and 34 other materials, were used to make three-way crosses (exotic/elite1//
elite2), resulting in 1,200 TC1F1 (top cross) populations. Only 244 of these TC1F2 populations were advanced, 
based on their agronomic performance. The diversity analysis of the exotics involved in generating these 244 
populations revealed them genetically diverse (Supplementary Fig. 8). The exotic parents of the 244 TC1F2 pop-
ulations were 125 CIMMYT synthetics: 50 accessions obtained from the International Center for Agriculture 
Research in Dry Areas (ICARDA), identified using the focused identification of germplasm strategy approach29; 
33 heat-adapted materials from the Australian germplasm bank in Horsham, Victoria and termed ‘Australia 
hot’15; and 15 Iranian landraces, 13 Mexican landraces and 8 inbred lines from CIMMYT’s germplasm bank. The 
selected exotic accessions were grown along with staggered planting of the 25 elite lines to make F1 crosses that 
were subsequently crossed with a second elite line to form three-way cross populations.

The 244 three-way cross populations were advanced by selected bulk method up to TC1F5 stage. 8,157 TC1F5 
plants were evaluated for plant type and disease performance of which 984 TC1F5:6 lines were selected. This pro-
cess resulted in the elimination of all lines from 62 of the 244 populations, mainly based on poor agronomic per-
formance and susceptibility to yellow rust. The selected 984 lines thus originated from 183 populations involving 
165 exotic accessions. These 165 exotics included 75 landraces (23 ‘Australia hot’, 9 Iranian landraces, 10 Mexican 
landraces and 33 landraces from focused identification of germplasm strategy-FIGS), 86 synthetics and 4 other 
germplasm bank lines. The 165 exotics represented different gene pools and from parts of the world. The exotics 
and PBLs have been enlisted in Supplementary Table 10B and C.

Development of Advanced Pre-Breeding Lines (PBLs). The 244 TC1F1 plants were advanced to the 
TC1F2 generation and approximately 2000 seeds for each TC1F2 were grown in 50 m plots at CIMMYT’s experi-
mental station at Ciudad Obregon, Mexico under drought- and heat-stress environments. Approximately 488,000 
TC1F3 plants were visually selected for good performance, and spikes from them were selected and bulked for 
each cross. The TC1F3 bulks were grown at El Batan and Toluca, Mexico, for bulk advancement following mild 
selection under natural infection of yellow rust disease (with susceptible checks ‘Avocet’ and ‘Morocco’). The 
TC1F4 bulk populations were grown at the Ciudad Obregon station under managed heat- and drought-stress for 
a second round of selection, resulting in 8157 TC1F4:5 selections that were grown in 1-m2 plots for evaluations 
of plant-type (at El Batan) and resistance to yellow rust (at Toluca). 984 TC1F5:6 plants were selected and subse-
quently advanced as “pre-breeding lines” (PBLs). The 984 PBLs originated from 183 top-crosses that used 165 
exotic accessions. The general pre-breeding strategy is outlined in Fig. 1.

Genotypic Characterization. Genomic DNA was extracted from leaf samples harvested from each TC1F5 
plant following a modified CTAB (cetyltrimethylammonium bromide) method30. DNA samples were quanti-
fied with a Nano-Drop 8000 spectrophotometer V 2.1.0. Genotypic characterization used DArTseq™ technol-
ogy (http://www.diversityarrays.com/dart-application-dartseq) at the Genetic Analysis Service for Agriculture 
(SAGA) service unit at CIMMYT headquarters (Texcoco, Mexico). The methodology described by Vikram et al.16 
was followed to generate a total of 58,378 high quality SNP markers. The main parameters to select markers were 
call rate (the proportion of samples with genotypic score and not recorded as missing data) and average reproduc-
ibility (the proportion of technical replicate assay pairs for which the marker score was consistent). 12,071 SNP 
markers belonging to 10,111 sequence tags were identified based on these criteria, out of which 7,180 were used 
for the final analysis (Supplementary Table 11). Chromosome location, marker order and genetic distances were 
defined based on a 64,000-marker DArT-seq consensus map released by Diversity Arrays Technology Pty Ltd. 
(DArT) (http://www.diversityarrays.com/sequence-maps).

Haplotype Characterization. Haplotypes were generated in R (http://www.R-project.org)31 using a script 
based on the algorithm from Gabriel et al.32. Briefly, 95% confidence bounds on D prime were generated and 
each comparison was called “strong LD”, “inconclusive” or “strong recombination”. A block was created if 95% of 
informative (i.e. non-inconclusive) comparisons were “strong LD”. This method defined pairs to be in strong LD if 
the one-sided upper 95% confidence bound on D’ was >0.98 and the lower bound above 0.7. The Hardy Weinberg 
p-value cut off was set to 0.001, and minimum marker allele frequency was set to 0.05. Individuals with more 

http://www.diversityarrays.com/dart-application-dartseq
http://www.diversityarrays.com/sequence-maps
http://www.R-project.org
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than 75% of missing data were excluded from haplotype construction. When multiple SNPs had the same genetic 
position, only the first marker was used in haplotype construction. The haplotypes were displayed as blocks of 
marker numbers and alleles. These were named with the prefix ‘HB’ for haplotype block, followed by a number 
for the chromosome [(1, 2, 3… until 21 (1 being 1A, 2 being 1B, 3 being 1D, etc. to 21 for 7D)], followed by a dot 
and incrementing numbers (1 to N, N being the total number of haplotypes) of the haplotype blocks along the 
chromosome. For example, HB1.1 and HB2.2 designate the first and second haplotypes on chromosomes 1A and 
1B, respectively.

Exotic Allele Contribution in Selected Crosses. To estimate the contribution of exotic accessions to 
derived PBLs, we analyzed ten crosses, each with ≥16 derived PBLs (Supplementary Table 2). Genetic composi-
tion of the PBLs was analyzed relative to the elite and exotic parents used in the crosses. The ABH script of Tassel33 
was used to identify the genotypes homozygous for all the parents and for which the alleles differed between the 
elite and exotic parents. If any parent of the cross was heterozygous for a marker, then that marker was classified as 
of unidentified origin in the PBL. Markers for which all parents were homozygous, and for which exotic and elite 
parent alleles differed, were designated as follows in the PBLs: recombinants denoted by H when the marker was 
heterozygous; allele of elite origin as “A”, and of exotic origin as “B”. All markers originally without information 
were considered as missing. This was done for each PBL in each specific cross.

GWA Analysis for Marker-Trait Associations. Genome-wide association (GWA) analysis was conducted 
for two population panels: (1) the panel of 984 PBLs and (2) a subset of 134 PBLs selected from the initial set of 
984 PBLs based on agronomic performance at multiple locations. The covariance matrix was derived by PCA 
using the PRCOMP function from the STATS package in R31. The kinship matrix was calculated using the R pack-
age GAPIT. GWAS analysis was conducted in Plink version 1.0734 executed in R. A mixed linear model (MLM) 
utilizing PCA as fixed and kinship matrix as random effect was used. The Bayesian Information Criterion (BIC) 
was used to select the appropriate number of principal components for each trait35.

Significant marker-trait associations (MTAs) were declared using a threshold p-value within the bottom 0.1 
percentile of the distribution. This approach avoids risk of type II error and has been used in recent studies for 
wheat36. A threshold p-value of 0.001 and 0.0001 corresponded to the bottom 0.1 percentile of the distribution 
for GY and yield components and for disease resistance, respectively. Hence, a marker was declared significant if 
it showed (a) p-value above the threshold and (b) deviation of its p-value from the normal distribution curve in 
the quantile-quantile (QQ) plot.

Evaluation for Grain Yield under Heat, Drought and Irrigated Conditions. Phenotypic evaluation 
of the 984 PBLs for GY under heat, drought and irrigated treatments was conducted at CIMMYT’s experimental 
station near Ciudad Obregon (27 20°N, 109 54°W, 38 m ASL), Mexico. 984 PBLs were evaluated for GY under 
heat stress in 2016 and 2017, as well as for GY under drought- and well-irrigated conditions in 2016. Further, a 
sub-set of 200 best-performing PBLs was selected from the 2016 trial for evaluation in 2017. The experimen-
tal designs were alpha-lattices with two or three replications, and plot size of 2.0 and 4.8 m2 in 2016 and 2017, 
respectively. Whereas irrigated and drought experiments were sown in the second fortnight of November, the 
heat stress trials were sown in early March to expose them to 35–40 °C temperatures during anthesis. Agronomic 
management was the same for all trials, except for irrigation. Approximately 600 mm of water was provided in 
the irrigated and the heat experiments, while the drought experiment received ~200 mm of total soil moisture 
during the crop season. The statistical analyses to estimate means and variances were performed using R software.

Evaluation of Grain Zinc Concentration. Zinc concentration was measured for grain of the 984 PBLs 
grown in a well-irrigated experiment with 2 replications at Ciudad Obregon in 2016. The 50 PBLs with highest 
grain Zn concentration (in 2016) were evaluated again in 2017 in an experiment with two replications. Grain Zn 
concentration (µg g−1) was estimated using a “bench-top,” non-destructive, energy-dispersive X-ray fluorescence 
spectrometry (EDXRF) instrument (model X-Supreme 8000, Oxford Instruments plc, Abingdon, UK) according 
to the method described by Paltridge et al.37.

Evaluation of Disease Resistances. Powdery Mildew (Blumeria graminis f. sp. tritici – Bgt) resistance of 
the 134 PBL sub-set was evaluated at Malan research station in Himachal Pradesh, India (31.1048°N, 77.1734°E), 
which is a natural hotspot for the disease. Experiments used randomized complete block designs (RCBD) with 
two replications of 1.0 m2 plots in which row-to-row spacing was 20 cm. Sowing was in the first fortnight of 
November (2016 and 2017) and standard agronomic practices (as explained in the above section) were followed. 
The susceptible varieties Lehmi and HPW 155 were sown between every tenth test genotype and on the outer 
boundaries of the plots for use as susceptible checks and to multiply and spread inoculum. The experiments were 
dust inoculated with a locally available isolate of Bgt. The inoculum was multiplied on seedlings of HPW155, 
Lehmi, and Agra Local grown in 4-inch pots. Data were recorded for overall disease reaction on a 0–9 scale as 
described by Saari and Prescott38.

The 134 PBLs were evaluated against yellow rust (Puccinia striiformis f. sp. tritici) virulent pathotypes 46S119 
and 78S84, at IARI-New Delhi (30.90284 N, 75.79692 220 m ASL), and PAU, Ludhiana (30.90284 N, 75.79692 E 
250 m ASL), India. Experiments were performed at both locations during two consecutive years, using RCBDs 
with two replications of 0.5 m2 plots with 20 cm inter-row spacing. Avocet was used as a susceptible check grown 
all-around the experimental blocks. Methodology explained by Hao et al.39. was used to inoculate spreader/bor-
der rows. Disease symptoms were scored when the susceptible check showed 100% yellow rust infection. The 
percent of infection was estimated according to the modified Cobb’s scale40.
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Bioinformatics Analysis of Significant Associations. Efforts were made to identify HB markers within 
the predicted gene coding sequence. Four HBs, i.e. HB16.10, HB18.1, HB10.5 and HB5.23, showing consistent 
significant effects (for GY-HB16.10, HB18.1, HB10.5 and yellow rust-HB5.23) in GWA using multi-location data, 
were subjected to bioinformatics analyses. Sixty base pair sequences of each clone ID associated with each SNP 
marker were anchored to the Refseq. 1 physical map of wheat using BLAST. Markers were anchored based on 
the top hit (taking into account both query length and percentage match). All genes were extracted between 
the outermost markers associated with each haplotype +/− 500 Kbp. The size of each interval and number of 
genes within these intervals are enlisted in Supplementary Table 12. Annotated high confidence genes within 
GY-associated haplotypes were then submitted to Knetminer17 to identify genes that have previously been impli-
cated in determining GY for multiple plant species.

The world map presented in Supplementary Fig. 8 was constructed using ESRI ArcGIS Desktop software41.
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