8,270 research outputs found

    Correspondence

    Get PDF

    Reducing transonic wind tunnel sting interference effects for concealed store release testing

    Get PDF
    Internal weapons bays are becoming increasingly common on aircraft for reasons of stealth and aerodynamic performance, and will be even more prevalent on coming generations of unmanned combat aerial vehicles (UCAVs). Wind tunnel testing of store releases to assess forces and moments for safety and clearance must be conducted with a store mounted to an angled strut rather than a conventional rear sting, to allow the full range of motion as the store “drops” from inside the aircraft. Interference from this strut can disrupt the flowfields and thus the reliability of moments obtained, and therefore an investigation was conducted to quantify the potential extent of discrepancies; original small-scale transonic wind tunnel testing was undertaken in a limited program which was supported by extensive numerical work. It was concluded that the precise geometry of the strut/store interface was of critical importance, with a typical design producing non-linear interference at high angles of attack. A simple improved design is proposed – making use of a blended interface and a more appropriate supercritical aerofoil strut cross section – yielding marked improvements in force and moment predictions

    From theory to 'measurement' in complex interventions: methodological lessons from the development of an e-health normalisation instrument

    Get PDF
    <b>Background</b> Although empirical and theoretical understanding of processes of implementation in health care is advancing, translation of theory into structured measures that capture the complex interplay between interventions, individuals and context remain limited. This paper aimed to (1) describe the process and outcome of a project to develop a theory-based instrument for measuring implementation processes relating to e-health interventions; and (2) identify key issues and methodological challenges for advancing work in this field.<p></p> <b>Methods</b> A 30-item instrument (Technology Adoption Readiness Scale (TARS)) for measuring normalisation processes in the context of e-health service interventions was developed on the basis on Normalization Process Theory (NPT). NPT focuses on how new practices become routinely embedded within social contexts. The instrument was pre-tested in two health care settings in which e-health (electronic facilitation of healthcare decision-making and practice) was used by health care professionals.<p></p> <b>Results</b> The developed instrument was pre-tested in two professional samples (N = 46; N = 231). Ratings of items representing normalisation 'processes' were significantly related to staff members' perceptions of whether or not e-health had become 'routine'. Key methodological challenges are discussed in relation to: translating multi-component theoretical constructs into simple questions; developing and choosing appropriate outcome measures; conducting multiple-stakeholder assessments; instrument and question framing; and more general issues for instrument development in practice contexts.<p></p> <b>Conclusions</b> To develop theory-derived measures of implementation process for progressing research in this field, four key recommendations are made relating to (1) greater attention to underlying theoretical assumptions and extent of translation work required; (2) the need for appropriate but flexible approaches to outcomes measurement; (3) representation of multiple perspectives and collaborative nature of work; and (4) emphasis on generic measurement approaches that can be flexibly tailored to particular contexts of study

    Improving the normalization of complex interventions: measure development based on normalization process theory (NoMAD): study protocol

    Get PDF
    <b>Background</b> Understanding implementation processes is key to ensuring that complex interventions in healthcare are taken up in practice and thus maximize intended benefits for service provision and (ultimately) care to patients. Normalization Process Theory (NPT) provides a framework for understanding how a new intervention becomes part of normal practice. This study aims to develop and validate simple generic tools derived from NPT, to be used to improve the implementation of complex healthcare interventions.<p></p> <b>Objectives</b> The objectives of this study are to: develop a set of NPT-based measures and formatively evaluate their use for identifying implementation problems and monitoring progress; conduct preliminary evaluation of these measures across a range of interventions and contexts, and identify factors that affect this process; explore the utility of these measures for predicting outcomes; and develop an online users’ manual for the measures.<p></p> <b>Methods</b> A combination of qualitative (workshops, item development, user feedback, cognitive interviews) and quantitative (survey) methods will be used to develop NPT measures, and test the utility of the measures in six healthcare intervention settings.<p></p> <b>Discussion</b> The measures developed in the study will be available for use by those involved in planning, implementing, and evaluating complex interventions in healthcare and have the potential to enhance the chances of their implementation, leading to sustained changes in working practices

    SPT-CL J0205-5829: A z = 1.32 Evolved Massive Galaxy Cluster in the South Pole Telescope Sunyaev-Zel'dovich Effect Survey

    Get PDF
    The galaxy cluster SPT-CL J0205-5829 currently has the highest spectroscopically-confirmed redshift, z=1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of Tx=8.7keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich derived mass. The combined SZ and X-ray mass estimate of M500=(4.9+/-0.8)e14 h_{70}^{-1} Msun makes it the most massive known SZ-selected galaxy cluster at z>1.2 and the second most massive at z>1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205-5829 are already well evolved by the time the universe was <5 Gyr old, with stellar population ages >3 Gyr, and low rates of star formation (<0.5Msun/yr). We find that, despite the high redshift and mass, the existence of SPT-CL J0205-5829 is not surprising given a flat LambdaCDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg^2 SPT-SZ survey is 69%.Comment: 11 pages, 5 figures, submitted to Ap

    Search for B-decay to Higgs bosons for Higgs boson masses between 50 and 210 MeV/c2

    Full text link
    We use data from the Mark II experiment at PEP to search for the process B--&gt;h0X for mh0 between 50 and 210 MeV/c2. No evidence for the Higgs boson is seen in this mass range. The limit obtained rules out the standard Higgs boson for masses between 70 and 210 MeV/c2 and significantly constrains extensions of the Higgs sector.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27719/1/0000107.pd

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    IDCS J1433.2+3306: An IR-Selected Galaxy Cluster at z = 1.89

    Full text link
    We report the discovery of an IR-selected galaxy cluster in the IRAC Distant Cluster Survey (IDCS). New data from the Hubble Space Telescope spectroscopically confirm IDCS J1433.2+3306 at z = 1.89 with robust spectroscopic redshifts for seven members, two of which are based on the 4000 Angstrom break. Detected emission lines such as [OII] and Hbeta indicate star formation rates of >20 solar masses per year for three galaxies within a 500 kpc projected radius of the cluster center. The cluster exhibits a red sequence with a scatter and color indicative of a formation redshift z > 3.5. The stellar age of the early-type galaxy population is approximately consistent with those of clusters at lower redshift (1 < z < 1.5) suggesting that clusters at these redshifts are experiencing ongoing or increasing star formation.Comment: Accepted in Ap

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore