168 research outputs found

    Ratio of electron donor to acceptor influences metabolic specialization and denitrification dynamics in Pseudomonas aeruginosa in a mixed carbon medium

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, I. H., Mullen, S., Ciccarese, D., Dumit, D., Martocello, D. E., Toyofuku, M., Nomura, N., Smriga, S., & Babbin, A. R. Ratio of electron donor to acceptor influences metabolic specialization and denitrification dynamics in Pseudomonas aeruginosa in a mixed carbon medium. Frontiers in Microbiology, 12, (2021): 711073, https://doi.org/10.3389/fmicb.2021.711073.Denitrifying microbes sequentially reduce nitrate (NO3–) to nitrite (NO2–), NO, N2O, and N2 through enzymes encoded by nar, nir, nor, and nos. Some denitrifiers maintain the whole four-gene pathway, but others possess partial pathways. Partial denitrifiers may evolve through metabolic specialization whereas complete denitrifiers may adapt toward greater metabolic flexibility in nitrogen oxide (NOx–) utilization. Both exist within natural environments, but we lack an understanding of selective pressures driving the evolution toward each lifestyle. Here we investigate differences in growth rate, growth yield, denitrification dynamics, and the extent of intermediate metabolite accumulation under varying nutrient conditions between the model complete denitrifier Pseudomonas aeruginosa and a community of engineered specialists with deletions in the denitrification genes nar or nir. Our results in a mixed carbon medium indicate a growth rate vs. yield tradeoff between complete and partial denitrifiers, which varies with total nutrient availability and ratios of organic carbon to NOx–. We found that the cultures of both complete and partial denitrifiers accumulated nitrite and that the metabolic lifestyle coupled with nutrient conditions are responsible for the extent of nitrite accumulation.Funding for this work was provided by Simons Foundation award 622065 and an MIT Environmental Solutions Initiative seed grant to AB. Additional support was received by the MIT Ferry Fund

    Microbial Ecology of Four Coral Atolls in the Northern Line Islands

    Get PDF
    Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide

    Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the past several decades, complementary and alternative medications have increasingly become a part of everyday treatment. With the rising cost of prescription medications and their production of unwanted side effects, patients are exploring herbal and other natural remedies for the management and treatment of psychological conditions. Psychological disorders are one of the most frequent conditions seen by clinicians, and often require a long-term regimen of prescription medications. Approximately 6.8 million Americans suffer from generalized anxiety disorder. Many also suffer from the spectrum of behavioural and physical side effects that often accompany its treatment. It is not surprising that there is universal interest in finding effective natural anxiolytic (anti-anxiety) treatments with a lower risk of adverse effects or withdrawal.</p> <p>Methods</p> <p>An electronic and manual search was performed through MEDLINE/PubMed and EBSCO. Articles were not discriminated by date of publication. Available clinical studies published in English that used human participants and examined the anxiolytic potential of dietary and herbal supplements were included. Data were extracted and compiled into tables that included the study design, sample population, intervention, control, length of treatment, outcomes, direction of evidence, and reported adverse events.</p> <p>Results</p> <p>A total of 24 studies that investigated five different CAM monotherapies and eight different combination treatments and involved 2619 participants met the inclusion criteria and were analyzed. There were 21 randomized controlled trials and three open-label, uncontrolled observational studies. Most studies involved patients who had been diagnosed with either an anxiety disorder or depression (n = 1786). However, eight studies used healthy volunteers (n = 877) who had normal levels of anxiety, were undergoing surgery, tested at the upper limit of the normal range of a trait anxiety scale, had adverse premenstrual symptoms or were peri-menopausal, reported anxiety and insomnia, or had one month or more of elevated generalized anxiety. Heterogeneity and the small number of studies for each supplement or combination therapy prevented a formal meta-analysis. Of the randomized controlled trials reviewed, 71% (15 out of 21) showed a positive direction of evidence. Any reported side effects were mild to moderate.</p> <p>Conclusions</p> <p>Based on the available evidence, it appears that nutritional and herbal supplementation is an effective method for treating anxiety and anxiety-related conditions without the risk of serious side effects. There is the possibility that any positive effects seen could be due to a placebo effect, which may have a significant psychological impact on participants with mental disorders. However, based on this systematic review, strong evidence exists for the use of herbal supplements containing extracts of passionflower or kava and combinations of L-lysine and L-arginine as treatments for anxiety symptoms and disorders. Magnesium-containing supplements and other herbal combinations may hold promise, but more research is needed before these products can be recommended to patients. St. John's wort monotherapy has insufficient evidence for use as an effective anxiolytic treatment.</p

    PCR-TTGE Analysis of 16S rRNA from Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Reveals Host-Specific Communities of Active Bacteria

    Get PDF
    This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family

    Sustaining rare marine microorganisms: macroorganisms as repositories and dispersal agents of microbial diversity

    Get PDF
    Recent analyses revealed that most of the biodiversity observed in marine microbial communities is represented by organisms with low abundance but, nonetheless essential for ecosystem dynamics and processes across both temporal and spatial scales. Surprisingly, few studies have considered the effect of macroorganism-microbe interactions on the ecology and distribution dynamics of rare microbial taxa. In this review, we synthesize several lines of evidence that these relationships cannot be neglected any longer. First, we provide empirical support that the microbiota of macroorganisms represents a significant part of marine bacterial biodiversity and that host-microbe interactions benefit to certain microbial populations which are part of the rare biosphere (i.e., opportunistic copiotrophic organisms). Second, we reveal the major role that macroorganisms may have on the dispersal and the geographic distribution of microbes. Third, we introduce an innovative and integrated view of the interactions between microbes and macroorganisms, namely sustaining the rares, which suggests that macroorganisms favor the maintenance of marine microbial diversity and are involved in the regulation of its richness and dynamics. Finally, we show how this hypothesis complements existing theories in microbial ecology and offers new perspectives about the importance of macroorganisms for the microbial biosphere, particularly the rare members

    Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells

    Get PDF
    Photosynthesis by marine diatoms plays a major role in the global carbon cycle, although the precise mechanisms of dissolved inorganic carbon (DIC) uptake remain unclear. A lack of direct measurements of carbonate chemistry at the cell surface has led to uncertainty over the underlying membrane transport processes and the role of external carbonic anhydrase (eCA). Here we identify rapid and substantial photosynthesis-driven increases in pH and [CO32−] primarily due to the activity of eCA at the cell surface of the large diatom Odontella sinensis using direct simultaneous microelectrode measurements of pH and CO32− along with modelling of cell surface inorganic carbonate chemistry. Our results show that eCA acts to maintain cell surface CO2 concentrations, making a major contribution to DIC supply in O. sinensis. Carbonate chemistry at the cell surface is therefore highly dynamic and strongly dependent on cell size, morphology and the carbonate chemistry of the bulk seawater

    The gut microbiota of marine fish

    Get PDF
    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research
    corecore