157 research outputs found
Youth Tackle Football: A Parent\u27s Decision
In this paper I will look at the statistics and likelihood of brain damage occurring in children who participate in full contact football, using a 2017 study done by Boston University’s Chronic Traumatic Encephalopathy Center, where former football players were tested for the effects of sustained trauma they first received from playing tackle football at a young age. This paper seeks to explain why participation in youth tackle football is still so high despite studies from Boston University and others like it. This paper incorporates interviews from coaches and directors of youth football elaborating on their opinions of young children’s participation in full contact youth football. These arguments will be supplemented by secondary sources from medical professionals and former players to get their perspectives on their perceived dangers of contact football and the precautions they take to reduce these risks. Primary data comes from phone and email interviews of ten current coaches and directors involved with youth football. The respondents were asked about what benefits they believe youth tackle football provides as well as their concussion knowledge and injury concern. Key themes will be taken from the interviews and will be combined with secondary data to understand what benefits are believed to be associated with youth tackle football. Using these themes I will attempt to explain why participation in youth tackle football is encouraged by some despite rising concerns about concussions and traumatic head injuries
The Colours of Rethoryk: The Medieval World’s Influence on Red and White Color Symbolism in Geoffrey Chaucer’s The Canterbury Tales
Chaucer’s use of visual imagery and symbolism in The Canterbury Tales. From a literary approach, scholars point to Chaucer’s diverse and extensive descriptions of visuals in poetry as a primary rhetorical avenue, where he applies commentary to instances where a physical image (known in this case as a symbol) is most appropriate to elicit a desired emotion or convey a certain idea concerning morali
Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135287/1/wnan1403.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135287/2/wnan1403_am.pd
Structure of RiVax: a recombinant ricin vaccine
The X-ray crystal structure (at 2.1 Å resolution) of an immunogen under development as part of a ricin vaccine for humans is presented and structure-based analysis of the results was conducted with respect to related proteins and the known determinants for inducing or suppressing the protective immune response
A Comparison of the Anti-Tumor Effects of a Chimeric versus Murine Anti-CD19 Immunotoxins on Human B Cell Lymphoma and Pre-B Acute Lymphoblastic Leukemia Cell Lines
Precursor B cell acute lymphoblastic leukemia (pre-B ALL) affects five to six thousand adults and almost three thousand children every year. Approximately 25% of the children and 60% of the adults die from their disease, highlighting the need for new therapies that complement rather than overlap chemotherapy and bone marrow transplantation. Immunotherapy is a class of therapies where toxicities and mechanisms of action do not overlap with those of chemotherapy. Because CD19 is a B cell- restricted membrane antigen that is expressed on the majority of pre-B tumor cells, a CD19-based immunotherapy is being developed for ALL. In this study, the anti-tumor activities of immunotoxins (ITs) constructed by conjugating a murine monoclonal antibody (MAb), HD37, or its chimeric (c) construct to recombinant ricin toxin A chain (rRTA) were compared both in vitro using human pre-B ALL and Burkitt’s lymphoma cell lines and in vivo using a disseminated human pre-B ALL tumor cell xenograft model. The murine and chimeric HD37 IT constructs were equally cytotoxic to pre-B ALL and Burkitt’s lymphoma cells in vitro and their use in vivo resulted in equivalent increases in survival of SCID mice with human pre-B ALL tumors when compared with control mice
Capturing Information on Vessels and Cetaceans: developing a passive monitoring system for Boundary Pass
As marine traffic intensifies in the Salish Sea, cetaceans, and in particular, Southern Resident Killer Whales (SRKWs), are continually facing increasing amounts of exposure to noise and other disturbances from movements of vessels. While the majority of large vessel activity can be captured and assessed through the use of Automatic Identification Systems (AIS), the contribution of smaller non-AIS vessels is difficult to quantify and currently largely under assessed. Increasingly, government and industry are required to take operational and strategic mitigation measures to minimise vessel disturbances on cetaceans without reliable, comprehensive data and analysis to inform those decisions. Therefore this work focuses on filling these gaps by collecting information on both non-AIS vessels and the presence of marine mammal (including SRKW) within Boundary Pass) using three passive forms of data collection: an AIS receiver, hydrophones and a land-based camera. This talk describes an outline of the camera work being undertaken, from the design stages to installation. It will highlight some of the initial findings from the early analysis work along with some of the challenges and limitations of this type of data. Additionally, acoustic data on cetaceans in Boundary Pass will also be presented. Unlike the camera this form of passive monitoring is only able to capture the presence of cetaceans when they are vocalizing. Evidence already exists to suggest that some species reduce their rate of vocalization in the presence of vessels (and their associated noise). Therefore, integration of both acoustic and visual data will enable us to build a more complete picture of cetacean habitat use and the relationship between vessels and cetaceans in Boundary Pass. Furthermore, the information obtained through analysis of this data is also particularly important for informing models that aim to assess the level of vessel disturbance cetaceans are subjected to
Neutralising Antibodies against Ricin Toxin
The Centers for Disease Control and Prevention have listed the potential bioweapon ricin as a Category B Agent. Ricin is a so-called A/B toxin produced by plants and is one of the deadliest molecules known. It is easy to prepare and no curative treatment is available. An immunotherapeutic approach could be of interest to attenuate or neutralise the effects of the toxin. We sought to characterise neutralising monoclonal antibodies against ricin and to develop an effective therapy. For this purpose, mouse monoclonal antibodies (mAbs) were produced against the two chains of ricin toxin (RTA and RTB). Seven mAbs were selected for their capacity to neutralise the cytotoxic effects of ricin in vitro. Three of these, two anti-RTB (RB34 and RB37) and one anti-RTA (RA36), when used in combination improved neutralising capacity in vitro with an IC50 of 31 ng/ml. Passive administration of association of these three mixed mAbs (4.7 µg) protected mice from intranasal challenges with ricin (5 LD50). Among those three antibodies, anti-RTB antibodies protected mice more efficiently than the anti-RTA antibody. The combination of the three antibodies protected mice up to 7.5 hours after ricin challenge. The strong in vivo neutralising capacity of this three mAbs combination makes it potentially useful for immunotherapeutic purposes in the case of ricin poisoning or possibly for prevention
Ribosome-Inactivating Proteins: From Plant Defense to Tumor Attack
Ribosome-inactivating proteins (RIPs) are EC3.2.32.22 N-glycosidases that recognize a universally conserved stem-loop structure in 23S/25S/28S rRNA, depurinating a single adenine (A4324 in rat) and irreversibly blocking protein translation, leading finally to cell death of intoxicated mammalian cells. Ricin, the plant RIP prototype that comprises a catalytic A subunit linked to a galactose-binding lectin B subunit to allow cell surface binding and toxin entry in most mammalian cells, shows a potency in the picomolar range. The most promising way to exploit plant RIPs as weapons against cancer cells is either by designing molecules in which the toxic domains are linked to selective tumor targeting domains or directly delivered as suicide genes for cancer gene therapy. Here, we will provide a comprehensive picture of plant RIPs and discuss successful designs and features of chimeric molecules having therapeutic potential
Toxin-Based Therapeutic Approaches
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
- …
