79 research outputs found

    Alterations in peptide levels in Parkinson's disease and incidental Lewy body disease

    Get PDF
    The levels of the neuropeptides Met- and Leu-enkephalin (MET-ENK, LEU-ENK), substance P and neurotensin were measured by a combined high performance liquid chromatography/radioimmunoassay (HPLC/RIA) method in postmortem samples of basal ganglia from Parkinson's disease patients, incidental Lewy body disease patients (presymptomatic Parkinson's disease) and matched controls. Dopamine (DA) levels were reduced in the caudate nucleus and putamen in Parkinson's disease, but unaltered in incidental Lewy body disease. The levels of MET-ENK were reduced in the caudate nucleus, putamen and substantia nigra in Parkinson's disease. Met-enkephalin levels were reduced in the caudate nucleus and in the putamen in incidental Lewy body disease. Leu-enkephalin levels were decreased in the putamen and were undetectable in the substantia nigra in Parkinson's disease. Leu-enkephalin levels were unchanged in incidental Lewy body disease, although there was a tendency to a reduction in putamen. Substance P levels were reduced in the putamen in Parkinson's disease. No significant changes in substance P content were observed in incidental Lewy body disease. Neurotensin levels were increased in the substantia nigra in Parkinson's disease. Neurotensin levels in incidental Lewy body disease were not altered significantly, but tended to parallel the changes in Parkinson's disease. The changes in basal ganglia peptide levels in incidental Lewy body disease generally followed a trend similar to those seen in Parkinson's disease, but were less marked. This suggests that they are an integral part of the pathology of the illness and not secondary to DA neuronal loss or a consequence of prolonged drug therapy.Peer Reviewe

    The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.</p> <p>Methods</p> <p>Using a rat meningitis model, we investigated the influence of MARCO and FPRL1 on rCRAMP (rat cathelin-related antimicrobial peptide) expression after infection with bacterial supernatants of <it>Streptococcus pneumoniae </it>(SP) and <it>Neisseria meningitides </it>(NM). Expression of FPRL1 and MARCO was analyzed by immunofluorescence and real-time RT-PCR in a rat meningitis model. Furthermore, we examined the receptor involvement by real-time RT-PCR, extracellular-signal regulated kinases 1/2 (ERK1/2) phosphorylation and cAMP level measurement in glial cells (astrocytes and microglia) and transfected HEK293 cells using receptor deactivation by antagonists. Receptors were inhibited by small interference RNA and the consequences in NM- and SP-induced Camp (rCRAMP gene) expression and signal transduction were determined.</p> <p>Results</p> <p>We show an NM-induced increase of MARCO expression by immunofluorescence and real-time RT-PCR in glial and meningeal cells. Receptor deactivation by antagonists and small interfering RNA (siRNA) verified the importance of FPRL1 and MARCO for NM- and SP-induced Camp and interleukin-1β expression in glial cells. Furthermore, we demonstrated a functional interaction between FPRL1 and MARCO in NM-induced signalling by real-time RT-PCR, ERK1/2 phosphorylation and cAMP level measurement and show differences between NM- or SP-induced signal transduction.</p> <p>Conclusions</p> <p>We propose that NM and SP induce glial cell activation and rCRAMP expression also via FPRL1 and MARCO. Thus the receptors contribute an important part to the host defence against infection.</p

    Improved hole extraction selectivity of polymer solar cells by combining PEDOT:PSS with WO 3

    Get PDF
    As the device performance and stability of polymer solar cells strongly depend on the interfacial charge extraction layers, the hole transport layer (HTL) properties are crucial. Furthermore, unfavorable interactions with the electrode or the photoactive layer should be screened and prevented. Organic solar cells of conventional architecture by varying the HTL material and layer stack systematically between PEDOT:PSS and a sol–gel‐derived tungsten oxide (WO 3 ) are investigated. The impact of various HTLs in the solar cells is investigated by optical and electrical characterization. Interestingly, a triple‐layer WO 3 /PEDOT:PSS/WO 3 configuration results in the best device performance specifically compared with the use of pristine WO 3 and pristine PEDOT:PSS hole extraction layers. The triple layer also shows an increased reproducibility in the lifetime, which, combined with the improvement in the efficiency, can be the keys for expectable revenue

    Burden of Risk Alleles for Hypertension Increases Risk of Intracerebral Hemorrhage

    Get PDF
    Background and Purpose-Genetic variation influences risk of intracerebral hemorrhage (ICH). Hypertension (HTN) is a potent risk factor for ICH and several common genetic variants (single nucleotide polymorphisms [SNPs]) associated with blood pressure levels have been identified. We sought to determine whether the cumulative burden of blood pressure-related SNPs is associated with risk of ICH and pre-ICH diagnosis of HTN. Methods-We conducted a prospective multicenter case-control study in 2272 subjects of European ancestry (1025 cases and 1247 control subjects). Thirty-nine SNPs reported to be associated with blood pressure levels were identified from the National Human Genome Research Institute genomewide association study catalog. Single-SNP association analyses were performed for the outcomes ICH and pre-ICH HTN. Subsequently, weighted and unweighted genetic risk scores were constructed using these SNPs and entered as the independent variable in logistic regression models with ICH and pre-ICH HTN as the dependent variables. Results-No single SNP was associated with either ICH or pre-ICH HTN. The blood pressure-based unweighted genetic risk score was associated with risk of ICH (OR, 1.11; 95% CI, 1.02-1.21; P=0.01) and the subset of ICH in deep regions (OR, 1.18; 95% CI, 1.07-1.30; P=0.001), but not with the subset of lobar ICH. The score was associated with a history of HTN among control subjects (OR, 1.17; 95% CI, 1.04-1.31; P=0.009) and ICH cases (OR, 1.15; 95% CI, 1.01-1.31; P=0.04). Similar results were obtained when using a weighted score. Conclusion-Increasing numbers of high blood pressure-related alleles are associated with increased risk of deep ICH as well as with clinically identified HTN. (Stroke. 2012; 43: 2877-2883.

    Genetic Variants in CETP Increase Risk of Intracerebral Hemorrhage

    Get PDF
    OBJECTIVE: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C; as such, medicines that inhibit CETP and raise HDL-C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL-C also increase risk for ICH.METHODS: We performed 2 candidate-gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL-C as well as ICH risk.RESULTS: Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10(-4) ) with no heterogeneity across studies (I(2) = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL-C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10(-6) ).INTERPRETATION: Genetic variants in CETP associated with increased HDL-C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL-raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730-740

    Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies

    Get PDF
    BACKGROUND: Genetic determinants of stroke, the leading neurological cause of death and disability, are poorly understood and have seldom been explored in the general population. Our aim was to identify additional loci for stroke by doing a meta-analysis of genome-wide association studies. METHODS: For the discovery sample, we did a genome-wide analysis of common genetic variants associated with incident stroke risk in 18 population-based cohorts comprising 84 961 participants, of whom 4348 had stroke. Stroke diagnosis was ascertained and validated by the study investigators. Mean age at stroke ranged from 45·8 years to 76·4 years, and data collection in the studies took place between 1948 and 2013. We did validation analyses for variants yielding a significant association (at p<5 × 10(-6)) with all-stroke, ischaemic stroke, cardioembolic ischaemic stroke, or non-cardioembolic ischaemic stroke in the largest available cross-sectional studies (70 804 participants, of whom 19 816 had stroke). Summary-level results of discovery and follow-up stages were combined using inverse-variance weighted fixed-effects meta-analysis, and in-silico lookups were done in stroke subtypes. For genome-wide significant findings (at p<5 × 10(-8)), we explored associations with additional cerebrovascular phenotypes and did functional experiments using conditional (inducible) deletion of the probable causal gene in mice. We also studied the expression of orthologs of this probable causal gene and its effects on cerebral vasculature in zebrafish mutants. FINDINGS: We replicated seven of eight known loci associated with risk for ischaemic stroke, and identified a novel locus at chromosome 6p25 (rs12204590, near FOXF2) associated with risk of all-stroke (odds ratio [OR] 1·08, 95% CI 1·05-1·12, p=1·48 × 10(-8); minor allele frequency 21%). The rs12204590 stroke risk allele was also associated with increased MRI-defined burden of white matter hyperintensity-a marker of cerebral small vessel disease-in stroke-free adults (n=21 079; p=0·0025). Consistently, young patients (aged 2-32 years) with segmental deletions of FOXF2 showed an extensive burden of white matter hyperintensity. Deletion of Foxf2 in adult mice resulted in cerebral infarction, reactive gliosis, and microhaemorrhage. The orthologs of FOXF2 in zebrafish (foxf2b and foxf2a) are expressed in brain pericytes and mutant foxf2b(-/-) cerebral vessels show decreased smooth muscle cell and pericyte coverage. INTERPRETATION: We identified common variants near FOXF2 that are associated with increased stroke susceptibility. Epidemiological and experimental data suggest that FOXF2 mediates this association, potentially via differentiation defects of cerebral vascular mural cells. Further expression studies in appropriate human tissues, and further functional experiments with long follow-up periods are needed to fully understand the underlying mechanisms

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting.

    Get PDF
    OBJECTIVE: To explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts. METHODS: We performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI. RESULTS: The mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 × 10-8; and LINC00539/ZDHHC20, p = 5.82 × 10-9. Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p [BI] = 9.38 × 10-25; p [SSBI] = 5.23 × 10-14 for hypertension), smoking (p [BI] = 4.4 × 10-10; p [SSBI] = 1.2 × 10-4), diabetes (p [BI] = 1.7 × 10-8; p [SSBI] = 2.8 × 10-3), previous cardiovascular disease (p [BI] = 1.0 × 10-18; p [SSBI] = 2.3 × 10-7), stroke (p [BI] = 3.9 × 10-69; p [SSBI] = 3.2 × 10-24), and MRI-defined white matter hyperintensity burden (p [BI] = 1.43 × 10-157; p [SSBI] = 3.16 × 10-106), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p ≤ 0.0022), without indication of directional pleiotropy. CONCLUSION: In this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    corecore