23 research outputs found

    Heart-Type Fatty Acid-Binding Protein Predicts Long-Term Mortality and Re-Infarction in Consecutive Patients With Suspected Acute Coronary Syndrome Who Are Troponin-Negative

    Get PDF
    ObjectivesThe purpose of this study was to establish the prognostic value of measuring heart fatty acid-binding protein (H-FABP) in patients with suspected acute coronary syndrome (ACS) (in particular, low- to intermediate-risk patients), in addition to troponin measured with the latest third-generation troponin assay.BackgroundWe have previously shown that H-FABP is a useful prognostic marker in patients with proven ACS.MethodsPatients (n = 1,080) consecutively admitted to the hospital with suspected ACS were recruited over 46 weeks. Siemens Advia Ultra-TnI (Siemens Healthcare Diagnostics, Newbury, United Kingdom) and Randox Evidence H-FABP (Randox Laboratories, Ltd., Co., Antrim, United Kingdom) were analyzed on samples collected 12 to 24 h from symptom onset. After exclusion of patients with ST-segment elevation and new left bundle branch block, 955 patients were included in the analysis.ResultsThe primary outcome measure of death or readmission with myocardial infarction after a minimum follow-up period of 12 months (median 18 months) occurred in 96 of 955 patients (10.1%). The H-FABP concentration was an independent predictor of death or myocardial infarction, after multivariate adjustment. Patients with H-FABP concentrations >6.48 μg/l had significantly increased risk of adverse events (adjusted hazard ratio: 2.62, 95% confidence interval: 1.30 to 5.28, p = 0.007). Among troponin-negative patients (which constituted 79.2% of the cohort), the aforementioned cutoff of 6.48 μg/l identified patients at very high risk for adverse outcomes independent of patient age and serum creatinine.ConclusionsWe have demonstrated that the prognostic value of elevated H-FABP is additive to troponin in low- and intermediate-risk patients with suspected ACS. Other studies suggest that our observations reflect the value of H-FABP as a marker of myocardial ischemia, even in the absence of frank necrosis

    Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Sinus of valsalva aneurysms: assessment with cardiovascular MRI.

    No full text
    OBJECTIVE The aim of this article is to present the role of cardiovascular MRI in the assessment of sinus of Valsalva aneurysms. An imaging protocol is described, along with a systematic approach to interpret MR findings and a synopsis of key findings. CONCLUSION Radiologists should have a systematic approach to the assessment and evaluation of sinus of Valsalva aneurysms to facilitate optimal patient management

    Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography

    No full text
    PURPOSE: To evaluate the technical performance of sensitivity encoding (SENSE)-accelerated myocardial perfusion magnetic resonance (MR) imaging and prospectively assess the diagnostic accuracy of this examination for depiction of significant coronary artery disease (CAD).&lt;p&gt;&lt;/p&gt; MATERIALS AND METHODS: All 102 subjects provided written informed consent, and the local ethics committee approved the study. A saturation-recovery segmented k-space gradient-echo pulse sequence was combined with SENSE to allow dynamic acquisition of myocardial perfusion data on four parallel short-axis MR image sections at every heartbeat. This technique was evaluated in 10 healthy volunteers and in 92 patients scheduled to undergo conventional coronary angiography. Gadopentetate dimeglumine was peripherally injected at rest and during adenosine-induced stress. The maximal upslope of the signal intensity–time profiles was plotted for 16 myocardial segments defined on three MR image sections, and a myocardial perfusion reserve index (MPRI) between stress and rest, normalized to the input function from the blood pool of the most basal section, was calculated. Areas under receiver operating characteristic curves (AUCs) were used to assess the diagnostic performance of cardiac MR imaging for depiction of greater than 70% CAD seen at coronary angiography, the reference standard.&lt;p&gt;&lt;/p&gt; RESULTS: In volunteers, the mean myocardial enhancement was 2.1 ± 1.2 (standard deviation), with homogeneous signal intensity distribution across the segments. The diagnostic accuracy of MPRI measurements was high (AUC, 0.908; sensitivity, 88% [52 of 59 patients]; specificity, 82% [27 of 33 patients]). Diagnostic performance was similar among separate analyses of the three coronary territories and among separate analyses of data in the patients with diabetes mellitus, left ventricular hypertrophy, or myocardial infarction.&lt;p&gt;&lt;/p&gt; CONCLUSION: Multisection myocardial perfusion MR imaging with SENSE is feasible and has high diagnostic accuracy in the detection of CAD
    corecore