86 research outputs found

    The soft X-ray properties of quasars in the Sloan Digital Sky Survey

    Full text link
    We use the ROSAT All Sky Survey (RASS) to study the soft X-ray properties of a homogeneous sample of 46,420 quasars selected from the third data release of the Sloan Digital Sky Survey (SDSS). Optical luminosities, both at rest-frame 2500\AA (L2500L_{2500}) and in [OIII] (L[OIII]L_{[\rm{OIII}]}) span more than three orders of magnitude, while redshifts range over 0.1<z<5.40.1<z<5.4. We detect 3366 quasars directly in the observed 0.1--2.4 keV band. Sub-samples of radio-loud and radio-quiet objects (RLQs and RQQs) are obtained by cross-matching with the FIRST catalogue. We study the distribution of X-ray luminosity as a function of optical luminosity, redshift and radio power using both individual detections and stacks of complete sets of similar quasars. At every optical luminosity and redshift \log L_{2\kev} is, to a good approximation, normally distributed with dispersion 0.40\sim 0.40, at least brightwards of the median X-ray luminosity. This median X-ray luminosity of quasars is a power law of optical luminosity with index 0.53\sim 0.53 for L2500L_{2500} and 0.30\sim 0.30 for L[OIII]L_{[\rm{OIII}]}. RLQs are systematically brighter than RQQs by about a factor of 2 at given optical luminosity. The zero-points of these relations increase systematically with redshift, possibly in different ways for RLQs and RQQs. Evolution is particularly strong at low redshift and if the optical luminosity is characterised by L[OIII]L_{[\rm{OIII}]}. At low redshift and at given L[OIII]L_{[\rm{OIII}]} the soft X-ray emission from type II AGN is more than 100 times weaker than that from type I AGN.Comment: 16 pages, 15 figures, 3 tables, replaced with final version accepted by MNRA

    A pan-African convection-permitting regional climate simulation with the Met Office Unified Model: CP4-Africa

    Get PDF
    A convection-permitting multi-year regional climate simulation using the Met Office Unified Model has been run for the first time on an Africa-wide domain. The model has been run as part of the Future Climate for Africa (FCFA) IMPALA (Improving Model Processes for African cLimAte) project and its configuration, domain and forcing data are described here in detail. The model (CP4-Africa) uses a 4.5km horizontal grid spacing at the equator and is run without a convection parametrization, nested within a global atmospheric model driven by observations at the sea-surface which does include a convection scheme. An additional regional simulation, with identical resolution and physical parametrizations to the global model, but with the domain, land surface and aerosol climatologies of the CP4-Africa model, has been run to aid understanding of the differences between the CP4-Africa and global model, in particular to isolate the impact of the convection parametrization and resolution. The effect of enforcing moisture conservation in the CP4-Africa model is described and its impact on reducing extreme precipitation values is assessed. Preliminary results from the first 5 years of the CP4-Africa simulation show substantial improvements in JJA average rainfall compared to the parameterized convection models, with most notably a reduction in the persistent dry bias in West Africa - giving an indication of the benefits to be gained from running a convection-permitting simulation over the whole African continent

    Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges

    Get PDF
    Citation: Ruiz-Villanueva, V., Piégay, H., Gurnell, A. A., Marston, R. A., & Stoffel, M. (2016). Recent advances quantifying the large wood dynamics in river basins: New methods and remaining challenges. Reviews of Geophysics. doi:10.1002/2015RG000514Large wood is an important physical component of woodland rivers and significantly influences river morphology. It is also a key component of stream ecosystems. However, large wood is also a source of risk for human activities as it may damage infrastructure, block river channels, and induce flooding. Therefore, the analysis and quantification of large wood and its mobility are crucial for understanding and managing wood in rivers. As the amount of large-wood-related studies by researchers, river managers, and stakeholders increases, documentation of commonly used and newly available techniques and their effectiveness has also become increasingly relevant as well. Important data and knowledge have been obtained from the application of very different approaches and have generated a significant body of valuable information representative of different environments. This review brings a comprehensive qualitative and quantitative summary of recent advances regarding the different processes involved in large wood dynamics in fluvial systems including wood budgeting and wood mechanics. First, some key definitions and concepts are introduced. Second, advances in quantifying large wood dynamics are reviewed; in particular, how measurements and modeling can be combined to integrate our understanding of how large wood moves through and is retained within river systems. Throughout, we present a quantitative and integrated meta-analysis compiled from different studies and geographical regions. Finally, we conclude by highlighting areas of particular research importance and their likely future trajectories, and we consider a particularly underresearched area so as to stress the future challenges for large wood research. ©2016. American Geophysical Union

    Romantic Writers and Mountaineering

    Get PDF

    Addition polymerization of 1,1-dimesitylneopentylgermene: synthesis of a polygermene

    Get PDF
    A new polymer with an alternating germanium-carbon backbone has been synthesized from 1,1-dimesitylneopentylgermene via addition polymerization using an anionic initiator

    The EU as a Green Leader

    No full text
    corecore