9 research outputs found

    Observation of nuclear modifications in W± boson production in pPb collisions at sNN=8.16TeV

    No full text
    The production of W± bosons is studied in proton-lead (pPb) collisions at a nucleon-nucleon centre-of-mass energy of sNN=8.16TeV. Measurements are performed in the W±→μ±νμ channel using a data sample corresponding to an integrated luminosity of 173.4±6.1nb−1, collected by the CMS Collaboration at the LHC. The number of positively and negatively charged W bosons is determined separately in the muon pseudorapidity region in the laboratory frame |ηlabμ|25GeV/c. The W± boson differential cross sections, muon charge asymmetry, and the ratios of W± boson yields for the proton-going over the Pb-going beam directions are reported as a function of the muon pseudorapidity in the nucleon-nucleon centre-of-mass frame. The measurements are compared to the predictions from theoretical calculations based on parton distribution functions (PDFs) at next-to-leading-order. The results favour PDF calculations that include nuclear modifications and provide constraints on the nuclear PDF global fits

    Measurement of ttˉ\hbox {t}{\bar{\hbox {t}}} normalised multi-differential cross sections in pp{\text {p}}{\text {p}} collisions at s=13TeV\sqrt{s}=13\,{\text {TeV}} , and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    No full text
    Normalised multi-differential cross sections for top quark pair (ttˉ\hbox {t}{\bar{\hbox {t}}}) production are measured in proton-proton collisions at a centre-of-mass energy of 13TeV\,{\text {TeV}} using events containing two oppositely charged leptons. The analysed data were recorded with the CMS detector in 2016 and correspond to an integrated luminosity of 35.9fb135.9{\,{\text {fb}}^{-1}} . The double-differential ttˉ\hbox {t}{\bar{\hbox {t}}} cross section is measured as a function of the kinematic properties of the top quark and of the ttˉ\hbox {t}{\bar{\hbox {t}}} system at parton level in the full phase space. A triple-differential measurement is performed as a function of the invariant mass and rapidity of the ttˉ\hbox {t}{\bar{\hbox {t}}} system and the multiplicity of additional jets at particle level. The data are compared to predictions of Monte Carlo event generators that complement next-to-leading-order (NLO) quantum chromodynamics (QCD) calculations with parton showers. Together with a fixed-order NLO QCD calculation, the triple-differential measurement is used to extract values of the strong coupling strength αS\alpha _{S} and the top quark pole mass (mtpolem_{{\text {t}}}^{{\text {pole}}}) using several sets of parton distribution functions (PDFs). The measurement of mtpolem_{{\text {t}}}^{{\text {pole}}} exploits the sensitivity of the ttˉ\hbox {t}{\bar{\hbox {t}}} invariant mass distribution to mtpolem_{{\text {t}}}^{{\text {pole}}} near the production threshold. Furthermore, a simultaneous fit of the PDFs, αS\alpha _{S}, and mtpolem_{{\text {t}}}^{{\text {pole}}} is performed at NLO, demonstrating that the new data have significant impact on the gluon PDF, and at the same time allow an accurate determination of αS\alpha _{S} and mtpolem_{{\text {t}}}^{{\text {pole}}}. The values αS(mZ)=0.11350.0017+0.0021\alpha _{S}(m_{{\text {Z}}}) = 0.1135{}^{+0.0021}_{-0.0017} and mtpole=170.5±0.8GeVm_{{\text {t}}}^{{\text {pole}}} = 170.5 \pm 0.8 \,{\text {GeV}} are extracted, which account for experimental and theoretical uncertainties, the latter being estimated from NLO scale variations. Possible effects from Coulomb and soft-gluon resummation near the ttˉ\hbox {t}{\bar{\hbox {t}}} production threshold are neglected in these parameter extractions. A rough estimate of these effects indicates an expected correction of mtpolem_{{\text {t}}}^{{\text {pole}}} of the order of +1GeV+1 \,{\text {GeV}} , which can be regarded as additional theoretical uncertainty in the current mtpolem_{{\text {t}}}^{{\text {pole}}} extraction

    Search for single production of vector-like quarks decaying to a top quark and a W boson in proton–proton collisions at s=13TeV

    Get PDF
    A search is presented for the single production of vector-like quarks in proton-proton collisions at s = 13 TeV . The data, corresponding to an integrated luminosity of 35.9 fb - 1 , were recorded with the CMS experiment at the LHC. The analysis focuses on the vector-like quark decay into a top quark and a W boson, with one muon or electron in the final state. The mass of the vector-like quark candidate is reconstructed from hadronic jets, the lepton, and the missing transverse momentum. Methods for the identification of b quarks and of highly Lorentz boosted hadronically decaying top quarks and W bosons are exploited in this search. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03 pb for vector-like quark masses of 700 to 2000 GeV . Mass exclusion limits up to 1660 GeV are obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb(-1), recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Search for a high-mass dimuon resonance produced in association with b quark jets at sqrt{s} = 13 TeV

    No full text
    A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb(-1) at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z boson couplings to a bb quark pair (g(b)), an sb quark pair (g(b)delta(bs)), and any same-flavor charged lepton (g(l)) or neutrino pair (g(nu)), with |g(nu)| = |g(l)|. For a Z ' boson with a mass mZ ' = 350 GeV (2 TeV) and |delta(bs)| < 0.25, the majority of the parameter space with 0.0057 < |g(l)| < 0.35 (0.25 < |g(l)| < 0.43) and 0.0079 < |g(b)| < 0.46 (0.34 < |g(b)| < 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z ' model with parameters consistent with low-energy b -> sll measurements. In this scenario, most of the allowed parameter space is excluded for a Z ' boson with 350 < mZ ' < 500 GeV, while the constraints are less stringent for higher mZ ' hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date

    Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the eμ final state in proton-proton collisions at s=13  TeV

    Get PDF
    A search for the lepton-flavor violating decay of the Higgs boson and potential additional Higgs bosons with a mass in the range 110-160 GeV to an e±μ∓ pair is presented. The search is performed with a proton-proton collision dataset at a center-of-mass energy of 13 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb−1. No excess is observed for the Higgs boson. The observed (expected) upper limit on the e±μ∓ branching fraction for it is determined to be 4.4 (4.7) × 10−5 at 95% confidence level, the most stringent limit set thus far from direct searches. The largest excess of events over the expected background in the full mass range of the search is observed at an e±μ∓ invariant mass of approximately 146 GeV with a local (global) significance of 3.8 (2.8) standard deviations

    Search for a light charged Higgs boson decaying to c-sbar in pp collisions at sqrt(s) = 8 TeV

    Get PDF
    see paper for full list of authorsInternational audienceA search for a light charged Higgs boson, originating from the decay of a top quark and subsequently decaying into a charm quark and a strange antiquark, is presented. The data used in the analysis correspond to an integrated luminosity of 19.7 inverse-femtobarns recorded in proton-proton collisions at sqrt(s) = 8 TeV by the CMS experiment at the LHC. The search is performed in the process t tbar to W+/- b H-/+ bbar, where the W boson decays to a lepton (electron or muon) and a neutrino. The decays lead to a final state comprising an isolated lepton, at least four jets and large missing transverse energy. No significant deviation is observed in the data with respect to the standard model predictions, and model-independent upper limits are set on the branching fraction BF( t to H+ b ), ranging from 1.2 to 6.5% for a charged Higgs boson with mass between 90 and 160 GeV, under the assumption that BF( H+ to c sbar ) = 100%

    Measurement of charged pion, kaon, and proton production in proton-proton collisions at root s=13 TeV

    No full text
    Transverse momentum spectra of charged pions, kaons, and protons are measured in proton-proton collisions at √s = 13 TeV with the CMS detector at the LHC. The particles, identified via their energy loss in the silicon tracker, are measured in the transverse momentum range of pT ∼ 0.1-1.7 GeV/c and rapidities /y/ < 1. The pT spectra and integrated yields are compared to previous results at smaller √s and to predictions of Monte Carlo event generators. The average pT increases with particle mass and charged particle multiplicity of the event. Comparisons with previous CMS results at √s = 0.9, 2.76, and 7 TeV show that the average pT and the ratios of hadron yields feature very similar dependences on the particle multiplicity in the event, independently of the center-of-mass energy of the pp collision

    Measurement of the ratio B(t›Wb)/B(t›Wq) in pp collisions at s=8 TeV

    Get PDF
    The ratio of the top-quark branching fractions R=B(t›Wb)/B(t›Wq), where the denominator includes the sum over all down-type quarks (q=b,s,d), is measured in the tt¯ dilepton final state with proton–proton collision data at s=8 TeV from an integrated luminosity of 19.7 fb-1, collected with the CMS detector. In order to quantify the purity of the signal sample, the cross section is measured by fitting the observed jet multiplicity, thereby constraining the signal and background contributions. By counting the number of b jets per event, an unconstrained value of R=1.014±0.003(stat.)±0.032(syst.) is measured, in a good agreement with current precision measurements in electroweak and flavour sectors. A lower limit R>0.955 at the 95% confidence level is obtained after requiring R?1, and a lower limit on the Cabibbo–Kobayashi–Maskawa matrix element |Vtb|>0.975 is set at 95% confidence level. The result is combined with a previous CMS measurement of the t-channel single-top-quark cross section to determine the top-quark total decay width, ?t=1.36±0.02(stat.)-0.11 +0.14(syst.) GeV. © 2014 The Author
    corecore