115 research outputs found

    Movements of 86Rb+ during Trapping Behaviors in an Aquatic Insectivorous Plant Aldrovanda vesiculosa

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Electrophysiological studies of the protozoan, Stentor coeruleus

    Full text link
    Transmembrane potentials and membrane characteristics of Stentor coeruleus were studied by means of microelectrodes and standard electrophysiological techniques. Intracellular resting potentials were found to be variable and recordable for only a brief span of time owing to the encapsulation of the recording electrodes. During this brief time span of recorded resting potentials were anamolous in that they were generally of positive polarity. When an extended Stentor was stimulated to contract, a 10–60 mv negative-going transient response was recorded from intracellular electrodes. After the electrodes had been encapsulated, a diphasic transient response was observed when the penetrated animal contracted. Simultaneous recordings from intracellular and encapsulated electrodes showed that the diphasic and negative-going transient responses occurred simultaneously. Contractions of Stentor occurred in 7 to 8 msec following a 2 to 3 msec latent period after a suprathreshold shock. Records obtained by use of photomultiplier and microelectrodes indicated that the contractions began 1.8 msec after the onset of the diphasic response. Prepotentials were observed prior to mechanically stimulated responses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50072/1/480010402_ftp.pd

    Action potentials in abscisic acid-deficient tomato mutant generated spontaneously and evoked by electrical stimulation

    Get PDF
    Action potentials generated spontaneously (SAPs) and evoked by electrical stimulation (APs) in tomato plants (Solanum lycopersicum L.) cv. Micro-Tom ABA-deficient mutants (sitiens—MTsit) and its wild type (MTwt) were characterized by continuous monitoring of electrical activity for 66 h and by application of an electrical stimulation supplied extracellularly. MTsit generated SAPs which spread along the stem, including petioles and roots with an amplitude of 44.6 ± 4.4 mV, half-time (t½) of 33.1 ± 2.9 s and velocity of 5.4 ± 1.0 cm min−1. Amplitude and velocity were 43 and 108 % higher in MTsit than in MTwt, respectively. The largest number of SAPs was registered in the early morning in both genotypes. MTsit was less responsive to electrical stimuli. The excitation threshold and the refractory period were greater in MTsit than in MTwt. After current application, APs were generated in the MTwt with 21.2 ± 2.4 mV amplitude and propagated with 5.6 ± 0.5 cm min−1 velocity. Lower intensity stimuli did not trigger APs in these plants. In MTsit APs were measured with amplitude of 26.8 ± 4.8 mV and propagated with velocity of 8.5 ± 0.1 cm min−1

    Petiole hyponasty: an ethylene-driven, adaptive response to changes in the environment

    Get PDF
    Hyponastic (upwardly bending) growth by leaves is a response of numerous plant species to adverse environmental conditions. This review summarises current knowledge on hyponasty with a particular focus on the role of ethylene in regulating this phenomenon and its possible adaptive significance

    Quite a few reasons for calling carnivores "the most wonderful plants in the world"

    Get PDF
    A plant is considered carnivorous if it receives any noticeable benefit from catching small animals. The morphological and physiological adaptations to carnivorous existence is most complex in plants, thanks to which carnivorous plants have been cited by Darwin as ‘the most wonderful plants in the world’. When considering the range of these adaptations, one realizes that the carnivory is a result of a multitude of different features. Scope: This review discusses a selection of relevant articles, culled from a wide array of research topics on plant carnivory, and focuses in particular on physiological processes associated with active trapping and digestion of prey. Carnivory offers the plants special advantages in habitats where nutrient supply is scarce. Counterbalancing costs are the investments in synthesis and the maintenance of trapping organs and hydrolysing enzymes. With the progress in genetic, molecular and microscopic techniques, we are well on the way to a full appreciation of various aspects of plant carnivory. Conclusions: Sufficiently complex to be of scientific interest and finite enough to allow conclusive appraisal, carnivorous plants can be viewed as unique models for the examination of rapid organ movements, plant excitability, enzyme secretion, nutrient absorption, food-web relationships, phylogenetic and intergeneric relationships or structural and mineral investment in carnivory

    A case of behavioural diversification in male floral function – the evolution of thigmonastic pollen presentation

    Get PDF
    The authors gratefully acknowledge funding provided by an Else-Neumann-Stipendium (http://www.fu-berlin.de/sites/promovieren/drs/nachwuchs/nachwuchs/nafoeg.html), Deutscher Akademischer Austausch Dienst (DAAD) and botconsult GmbH at different stages of data acquisition. We thank Tobias Grass, Joana Bergmann and Franziska Weber (Freie Universität Berlin) for help with data collection in the field and in the greenhouse. Nicole Schmandt, Federico Luebert, Juliana Chacón and Dietmar Quant (Universität Bonn) provided help in the molecular laboratory and the edition of the molecular dataset. We furthermore thank Markus Ackermann (Koblenz) for providing photographs, Philipp Klein (Berlin) for editing the video and Katy Jones (Berlin) for helpful comments on an earlier version of the manuscript. Rafael Acuña has been supported by the ALECOSTA scholarship program. Coverage of the article processing charge by the German Research Foundation via the Open Access Publication Fund of the Freie Universität Berlin is gratefully acknowledged.Peer reviewedPublisher PD
    corecore