1,095 research outputs found

    A specious unlinking strategy

    Get PDF
    We show that the following unlinking strategy does not always yield an optimal sequence of crossing changes: first split the link with the minimal number of crossing changes, and then unknot the resulting components

    Protective Effect of Hainosankyuto, a Traditional Japanese Medicine, on Streptococcus pyogenes Infection in Murine Model

    Get PDF
    BACKGROUND: Streptococcus pyogenes (S. pyogenes) causes various serious diseases including necrotizing fasciitis and streptococcal toxic shock syndrome. One serious problem observed recently with S. pyogenes therapy is attenuation of the antibiotic effect, especially penicillin treatment failure and macrolide resistance. Hainosankyuto, a traditional Japanese medicine based on ancient Chinese medicine, has been used for treatment of infectious purulent diseases in Japan. In this study, we investigated the protective and therapeutic efficacy of Hainosankyuto against S. pyogenes-skin infection. METHODOLOGY/PRINCIPAL FINDINGS: A broth microdilution method revealed that Hainosankyuto did not show a direct anti-bacterial effect against S. pyogenes. Force-feeding Hainosankyuto to infected mice for 4 consecutive days increased the survival rate and reduced the size of local skin lesions compared with mice fed PBS. Although we did not find the significant recovery of survival rate in Hainosankyuto administration only after S. pyogenes infection, the sizes of ulcer lesion were significant smaller after Hainosankyuto administration compared with mice fed PBS. No difference was observed in the anti-bacterial effect of Hainosankyuto between macrolide-susceptible and -resistant strains. Blood bactericidal assay showed that the survival rate of S. pyogenes using the blood from Hainosankyuto-treated mice was lower than that using the blood from untreated mice. We also found increased levels of IL-12, IFN-γ and a decreased level of TNF-α in the serum of S. pyogenes-infected mice treated with Hainosankyuto. Mouse peritoneal macrophage from Hainosankyuto-treated mice had significant phagocytic activity and increased mRNA levels of IL-12, IFN-γ and decreased mRNA level of TNF-α compared with control macrophage. CONCLUSIONS/SIGNIFICANCE: Hainosankyuto increased survival rate after S. pyogenes infection and up-regulated both blood bactericidal activity and macrophage phagocytic activity through modulation of inflammatory cytokines. Our data also suggest Hainosankyuto may be useful for the treatment of S. pyogenes infection more prophylactically than therapeutically

    Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable Energy Ultraviolet Photoelectron Spectroscopy

    Get PDF
    Direct detection of intrinsic defects in halide perovskites (HaPs) by standard methods utilizing optical excitation is quite challenging, due to the low density of defects in most samples of this family of materials (≤10^{15} cm^{–3} in polycrystalline thin films and ≤10^{11} cm^{–3} in single crystals, except melt-grown ones). While several electrical methods can detect defect densities 2 eV) HaPs. By measuring HaP layers on both hole- and electron-contact layers, as well as single crystals without contacts, we conclude that the observed deep defects are intrinsic to the Br-based HaP, and we propose a passivation route via the incorporation of a 2D-forming ligand into the precursor solution

    Threshold intensity factors as lower boundaries for crack propagation in ceramics

    Get PDF
    BACKGROUND: Slow crack growth can be described in a v (crack velocity) versus K(I )(stress intensity factor) diagram. Slow crack growth in ceramics is attributed to corrosion assisted stress at the crack tip or at any pre-existing defect in the ceramic. The combined effect of high stresses at the crack tip and the presence of water or body fluid molecules (reducing surface energy at the crack tip) induces crack propagation, which eventually may result in fatigue. The presence of a threshold in the stress intensity factor, below which no crack propagation occurs, has been the subject of important research in the last years. The higher this threshold, the higher the reliability of the ceramic, and consequently the longer its lifetime. METHODS: We utilize the Irwin K-field displacement relation to deduce crack tip stress intensity factors from the near crack tip profile. Cracks are initiated by indentation impressions. The threshold stress intensity factor is determined as the time limit of the tip stress intensity when the residual stresses have (nearly) disappeared. RESULTS: We determined the threshold stress intensity factors for most of the all ceramic materials presently important for dental restorations in Europe. Of special significance is the finding that alumina ceramic has a threshold limit nearly identical with that of zirconia. CONCLUSION: The intention of the present paper is to stress the point that the threshold stress intensity factor represents a more intrinsic property for a given ceramic material than the widely used toughness (bend strength or fracture toughness), which refers only to fast crack growth. Considering two ceramics with identical threshold limits, although with different critical stress intensity limits, means that both ceramics have identical starting points for slow crack growth. Fast catastrophic crack growth leading to spontaneous fatigue, however, is different. This growth starts later in those ceramic materials that have larger critical stress intensity factors

    The contribution of refractoriness to arrhythmic substrate in hypokalemic Langendorff-perfused murine hearts

    Get PDF
    The clinical effects of hypokalemia including action potential prolongation and arrhythmogenicity suppressible by lidocaine were reproduced in hypokalemic (3.0 mM K(+)) Langendorff-perfused murine hearts before and after exposure to lidocaine (10 μM). Novel limiting criteria for local and transmural, epicardial, and endocardial re-excitation involving action potential duration (at 90% repolarization, APD(90)), ventricular effective refractory period (VERP), and transmural conduction time (Δlatency), where appropriate, were applied to normokalemic (5.2 mM K(+)) and hypokalemic hearts. Hypokalemia increased epicardial APD(90) from 46.6 ± 1.2 to 53.1 ± 0.7 ms yet decreased epicardial VERP from 41 ± 4 to 29 ± 1 ms, left endocardial APD(90) unchanged (58.2 ± 3.7 to 56.9 ± 4.0 ms) yet decreased endocardial VERP from 48 ± 4 to 29 ± 2 ms, and left Δlatency unchanged (1.6 ± 1.4 to 1.1 ± 1.1 ms; eight normokalemic and five hypokalemic hearts). These findings precisely matched computational predictions based on previous reports of altered ion channel gating and membrane hyperpolarization. Hypokalemia thus shifted all re-excitation criteria in the positive direction. In contrast, hypokalemia spared epicardial APD(90) (54.8 ± 2.7 to 60.6 ± 2.7 ms), epicardial VERP (84 ± 5 to 81 ± 7 ms), endocardial APD(90) (56.6 ± 4.2 to 63.7 ± 6.4 ms), endocardial VERP (80 ± 2 to 84 ± 4 ms), and Δlatency (12.5 ± 6.2 to 7.6 ± 3.4 ms; five hearts in each case) in lidocaine-treated hearts. Exposure to lidocaine thus consistently shifted all re-excitation criteria in the negative direction, again precisely agreeing with the arrhythmogenic findings. In contrast, established analyses invoking transmural dispersion of repolarization failed to account for any of these findings. We thus establish novel, more general, criteria predictive of arrhythmogenicity that may be particularly useful where APD(90) might diverge sharply from VERP

    Association of CD40 Gene Polymorphisms with Sporadic Breast Cancer in Chinese Han Women of Northeast China

    Get PDF
    BACKGROUND: Breast cancer is a polygenetic disorder with a complex inheritance pattern. Single nucleotide polymorphisms (SNPs), the most common genetic variations, influence not only phenotypic traits, but also interindividual predisposition to disease, treatment outcomes with drugs and disease prognosis. The co-stimulatory molecule CD40 plays a prominent role in immune regulation and homeostasis. Accumulating evidence suggests that CD40 contributes to the pathogenesis of cancer. Here, we set out to test the association between polymorphisms in the CD40 gene and breast carcinogenesis and tumor pathology. METHODOLOGY AND PRINCIPAL FINDINGS: Four SNPs (rs1800686, rs1883832, rs4810485 and rs3765459) were genotyped by the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method in a case-control study including 591 breast cancer patients and 600 age-matched healthy controls. Differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed by the Chi-square test for trends. Our preliminary data showed a statistically significant association between the four CD40 gene SNPs and sporadic breast cancer risk (additive P = 0.0223, 0.0012, 0.0013 and 0.0279, respectively). A strong association was also found using the dominant, recessive and homozygote comparison genetic models. In the clinical features analysis, significant associations were observed between CD40 SNPs and lymph node metastasis, human epidermal growth factor receptor 2 (C-erbB2), estrogen receptor (ER), progesterone receptor (PR) and tumor protein 53 (P53) statuses. In addition, our haplotype analysis indicated that the haplotype C(rs1883832)G(rs4810485), which was located within the only linkage disequilibrium (LD) block identified, was a protective haplotype for breast cancer, whereas T(rs1883832)T(rs4810485) increased the risk in the studied population, even after correcting the P value for multiple testing (P = 0.0337 and 0.0430, respectively). CONCLUSIONS AND SIGNIFICANCE: Our findings primarily show that CD40 gene polymorphisms contribute to sporadic breast cancer risk and have a significant association with clinicopathological features among Chinese Han women from the Heilongjiang Province

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    Alternans and arrhythmogenicity were studied in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced at high rates. Epicardial and endocardial monophasic action potentials were recorded and durations quantified at 90% repolarization. Alternans and arrhythmia occurred in hypokalaemic, but not normokalaemic (5.2 mM K+) hearts (P < 0.01): this was prevented by treatment with lidocaine (10 μM, P < 0.01). Fourier analysis then confirmed transition from monomorphic to polymorphic waveforms for the first time in the murine heart. Alternans and arrhythmia were associated with increases in the slopes of restitution curves, obtained for the first time in the murine heart, while the anti-arrhythmic effect of lidocaine was associated with decreased slopes. Thus, hypokalaemia significantly increased (P < 0.05) maximal gradients (from 0.55 ± 0.14 to 2.35 ± 0.67 in the epicardium and from 0.67 ± 0.13 to 1.87 ± 0.28 in the endocardium) and critical diastolic intervals (DIs) at which gradients equalled unity (from −2.14 ± 0.52 ms to 50.93 ± 14.45 ms in the epicardium and from 8.14 ± 1.49 ms to 44.64 ± 5 ms in the endocardium). While treatment of normokalaemic hearts with lidocaine had no significant effect (P > 0.05) on either maximal gradients (0.78 ± 0.27 in the epicardium and 0.83 ± 0.45 in the endocardium) or critical DIs (6.06 ± 2.10 ms and 7.04 ± 3.82 ms in the endocardium), treatment of hypokalaemic hearts with lidocaine reduced (P < 0.05) both these parameters (1.05 ± 0.30 in the epicardium and 0.89 ± 0.36 in the endocardium and 30.38 ± 8.88 ms in the epicardium and 31.65 ± 4.78 ms in the endocardium, respectively). We thus demonstrate that alternans contributes a dynamic component to arrhythmic substrate during hypokalaemia, that restitution may furnish an underlying mechanism and that these phenomena are abolished by lidocaine, both recapitulating and clarifying clinical findings

    Recruitment of regulatory T cells is correlated with hypoxia-induced CXCR4 expression, and is associated with poor prognosis in basal-like breast cancers

    Get PDF
    Introduction: Basal-like breast cancers behave more aggressively despite the presence of a dense lymphoid infiltrate. We hypothesised that immune suppression in this subtype may be due to T regulatory cells (Treg) recruitment driven by hypoxia-induced up-regulation of CXCR4 in Treg.Methods: Immunoperoxidase staining for FOXP3 and CXCL12 was performed on tissue microarrays from 491 breast cancers. The hypoxia-associated marker carbonic anhydrase IX (CA9) and double FOXP3/CXCR4 staining were performed on sections from a subset of these cancers including 10 basal-like and 11 luminal cancers matched for tumour grade.Results: High Treg infiltration correlated with tumour CXCL12 positivity (OR 1.89, 95% CI 1.22 to 2.94, P = 0.004) and basal phenotype (OR 3.14, 95% CI 1.08 to 9.17, P = 0.004) in univariate and multivariate analyses. CXCL12 positivity correlated with improved survival (P = 0.005), whereas high Treg correlated with shorter survival for all breast cancers (P = 0.001), luminal cancers (P &lt; 0.001) and basal-like cancers (P = 0.040) that were confirmed in a multivariate analysis (OR 1.61, 95% CI 1.02 to 2.53, P = 0.042). In patients treated with hormone therapy, high Treg were associated with a shorter survival in a multivariate analysis (OR 1.78, 95% CI 1.01 to 3.15, P = 0.040). There was a tendency for luminal cancers to show CXCL12 expression (102/138, 74%) compared to basal-like cancers (16/27, 59%), which verged on statistical significance (P = 0.050). Up-regulation of CXCR4 in Treg correlated with the basal-like phenotype (P = 0.029) and tumour hypoxia, as indicated by CA9 expression (P = 0.049).Conclusions: Our data show that in the setting of hypoxia and CXCR4 up-regulation in Treg, CXCL12 expression may have the negative consequence of enhancing Treg recruitment and suppressing the anti-tumour immune response. © 2011 Yan et al.; licensee BioMed Central Ltd

    Altered Energy Homeostasis and Resistance to Diet-Induced Obesity in KRAP-Deficient Mice

    Get PDF
    Obesity and related metabolic disorders have become leading causes of adult morbidity and mortality. KRAP (Ki-ras-induced actin-interacting protein) is a cytoskeleton-associated protein and a ubiquitous protein among tissues, originally identified as a cancer-related molecule, however, its physiological roles remain unknown. Here we demonstrate that KRAP-deficient (KRAP−/−) mice show enhanced metabolic rate, decreased adiposity, improved glucose tolerance, hypoinsulinemia and hypoleptinemia. KRAP−/− mice are also protected against high-fat diet-induced obesity and insulin resistance despite of hyperphagia. Notably, glucose uptake in the brown adipose tissue (BAT) in KRAP−/− mice is enhanced in an insulin-independent manner, suggesting that BAT is involved in altered energy homeostasis in KRAP−/− mice, although UCP (Uncoupling protein) expressions are not altered. Of interest is the down-regulation of fatty acid metabolism-related molecules, including acetyl-CoA carboxylase (ACC)-1, ACC-2 and fatty acid synthase in the liver of KRAP−/− mice, which could in part account for the metabolic phenotype in KRAP−/− mice. Thus, KRAP is a novel regulator in whole-body energy homeostasis and may be a therapeutic target in obesity and related diseases
    corecore