30 research outputs found
A dataset of clinically recorded radar vital signs with synchronised reference sensor signals
Using Radar it is possible to measure vital signs through clothing or a mattress from the distance. This allows for a very comfortable way of continuous monitoring in hospitals or home environments. The dataset presented in this article consists of 24 h of synchronised data from a radar and a reference device. The implemented continuous wave radar system is based on the Six-Port technology and operates at 24 GHz in the ISM band. The reference device simultaneously measures electrocardiogram, impedance cardiogram and non-invasive continuous blood pressure. 30 healthy subjects were measured by physicians according to a predefined protocol. The radar was focused on the chest while the subjects were lying on a tilt table wired to the reference monitoring device. In this manner five scenarios were conducted, the majority of them aimed to trigger hemodynamics and the autonomic nervous system of the subjects. Using the database, algorithms for respiratory or cardiovascular analysis can be developed and a better understanding of the characteristics of the radar-recorded vital signs can be gained
Vortex Images and q-Elementary Functions
In the present paper problem of vortex images in annular domain between two
coaxial cylinders is solved by the q-elementary functions. We show that all
images are determined completely as poles of the q-logarithmic function, where
dimensionless parameter is given by square ratio of the
cylinder radii. Resulting solution for the complex potential is represented in
terms of the Jackson q-exponential function. By composing pairs of q-exponents
to the first Jacobi theta function and conformal mapping to a rectangular
domain we link our solution with result of Johnson and McDonald. We found that
one vortex cannot remain at rest except at the geometric mean distance, but
must orbit the cylinders with constant angular velocity related to q-harmonic
series. Vortex images in two particular geometries in the limit
are studied.Comment: 17 page
Contactless analysis of heart rate variability during cold pressor test using radar interferometry and bidirectional LSTM networks
Contactless measurement of heart rate variability (HRV), which reflects changes of the autonomic nervous system (ANS) and provides crucial information on the health status of a person, would provide great benefits for both patients and doctors during prevention and aftercare. However, gold standard devices to record the HRV, such as the electrocardiograph, have the common disadvantage that they need permanent skin contact with the patient. Being connected to a monitoring device by cable reduces the mobility, comfort, and compliance by patients. Here, we present a contactless approach using a 24 GHz Six-Port-based radar system and an LSTM network for radar heart sound segmentation. The best scores are obtained using a two-layer bidirectional LSTM architecture. To verify the performance of the proposed system not only in a static measurement scenario but also during a dynamic change of HRV parameters, a stimulation of the ANS through a cold pressor test is integrated in the study design. A total of 638 minutes of data is gathered from 25 test subjects and is analysed extensively. High F-scores of over 95% are achieved for heartbeat detection. HRV indices such as HF norm are extracted with relative errors around 5%. Our proposed approach is capable to perform contactless and convenient HRV monitoring and is therefore suitable for long-term recordings in clinical environments and home-care scenarios
A dataset of clinically recorded radar vital signs with synchronised reference sensor signals
Abstract
Using Radar it is possible to measure vital signs through clothing or a mattress from the distance. This allows for a very comfortable way of continuous monitoring in hospitals or home environments. The dataset presented in this article consists of 24âh of synchronised data from a radar and a reference device. The implemented continuous wave radar system is based on the Six-Port technology and operates at 24âGHz in the ISM band. The reference device simultaneously measures electrocardiogram, impedance cardiogram and non-invasive continuous blood pressure. 30 healthy subjects were measured by physicians according to a predefined protocol. The radar was focused on the chest while the subjects were lying on a tilt table wired to the reference monitoring device. In this manner five scenarios were conducted, the majority of them aimed to trigger hemodynamics and the autonomic nervous system of the subjects. Using the database, algorithms for respiratory or cardiovascular analysis can be developed and a better understanding of the characteristics of the radar-recorded vital signs can be gained
Multiphoton Quantum Optics and Quantum State Engineering
We present a review of theoretical and experimental aspects of multiphoton
quantum optics. Multiphoton processes occur and are important for many aspects
of matter-radiation interactions that include the efficient ionization of atoms
and molecules, and, more generally, atomic transition mechanisms;
system-environment couplings and dissipative quantum dynamics; laser physics,
optical parametric processes, and interferometry. A single review cannot
account for all aspects of such an enormously vast subject. Here we choose to
concentrate our attention on parametric processes in nonlinear media, with
special emphasis on the engineering of nonclassical states of photons and
atoms. We present a detailed analysis of the methods and techniques for the
production of genuinely quantum multiphoton processes in nonlinear media, and
the corresponding models of multiphoton effective interactions. We review
existing proposals for the classification, engineering, and manipulation of
nonclassical states, including Fock states, macroscopic superposition states,
and multiphoton generalized coherent states. We introduce and discuss the
structure of canonical multiphoton quantum optics and the associated one- and
two-mode canonical multiphoton squeezed states. This framework provides a
consistent multiphoton generalization of two-photon quantum optics and a
consistent Hamiltonian description of multiphoton processes associated to
higher-order nonlinearities. Finally, we discuss very recent advances that by
combining linear and nonlinear optical devices allow to realize multiphoton
entangled states of the electromnagnetic field, that are relevant for
applications to efficient quantum computation, quantum teleportation, and
related problems in quantum communication and information.Comment: 198 pages, 36 eps figure
Continuous In-Bed Monitoring of Vital Signs Using a Multi Radar Setup for Freely Moving Patients
In hospitals, continuous monitoring of vital parameters can provide valuable information about the course of a patient’s illness and allows early warning of emergencies. To enable such monitoring without restricting the patient’s freedom of movement and comfort, a radar system is attached under the mattress which consists of four individual radar modules to cover the entire width of the bed. Using radar, heartbeat and respiration can be measured without contact and through clothing. By processing the raw radar data, the presence of a patient can be determined and movements are categorized into the classes “bed exit”, “bed entry”, and “on bed movement”. Using this information, the vital parameters can be assessed in sections where the patient lies calmly in bed. In the first step, the presence and movement classification is demonstrated using recorded training and test data. Next, the radar was modified to perform vital sign measurements synchronized to a gold standard device. The evaluation of the individual radar modules shows that, regardless of the lying position of the test person, at least one of the radar modules delivers accurate results for continuous monitoring.In hospitals, continuous monitoring of vital parameters can provide valuable information about the course of a patientâs illness and allows early warning of emergencies. To enable such monitoring without restricting the patientâs freedom of movement and comfort, a radar system is attached under the mattress which consists of four individual radar modules to cover the entire width of the bed. Using radar, heartbeat and respiration can be measured without contact and through clothing. By processing the raw radar data, the presence of a patient can be determined and movements are categorized into the classes âbed exitâ, âbed entryâ, and âon bed movementâ. Using this information, the vital parameters can be assessed in sections where the patient lies calmly in bed. In the first step, the presence and movement classification is demonstrated using recorded training and test data. Next, the radar was modified to perform vital sign measurements synchronized to a gold standard device. The evaluation of the individual radar modules shows that, regardless of the lying position of the test person, at least one of the radar modules delivers accurate results for continuous monitoring
An Accurate Free Space Method for Material Characterization in W- Band Using Material Samples with Two Different Thicknesses
This paper presents an accurate free space method for material characterization eliminating the problem of the required precise orientation between the material and the antennas and expanding the unambiguous range for electrical thick samples. It includes theoretical considerations and measurement results of four different materials. Overall, a maximum measurement uncertainty of 0.0153 for the relative permittivity and 0.001 for the loss tangent in the W-band can be achieved. Depending on the variation of the material's thickness, the implemented setup changes lead to an reduction of the measurement uncertainty of 8 to 58 %
A dataset of radar-recorded heart sounds and vital signs including synchronised reference sensor signals
Radar systems allow for contactless measurements of vital signs such as heart sounds, the pulse signal, and respiration. This approach is able to tackle crucial disadvantages of state-of-the-art monitoring devices such as the need for permanent wiring and skin contact. Potential applications include the employment in a hospital environment but also in home care or passenger vehicles. This dataset consists of synchronised data which are acquired using a Six-Port-based radar system operating at 24 GHz, a digital stethoscope, an ECG, and a respiration sensor. 11 test subjects were measured in different defined scenarios and at several measurement positions such as at the carotid, the back, and several frontal positions on the thorax. Overall, around 223 minutes of data were acquired at scenarios such as breath-holding, post-exercise measurements, and while speaking. The presented dataset contains reference-labeled ECG signals and can therefore easily be used to either test algorithms for monitoring the heart rate, but also to gain insights about characteristic effects of radar-based vital sign monitoring
Radar-based heart sound detection
This paper introduces heart sound detection by radar systems, which enables touch-free and continuous monitoring of heart sounds. The proposed measurement principle entails two enhancements in modern vital sign monitoring. First, common touch-based auscultation with a phonocardiograph can be simplified by using biomedical radar systems. Second, detecting heart sounds offers a further feasibility in radar-based heartbeat monitoring. To analyse the performance of the proposed measurement principle, 9930 seconds of eleven persons-under-testsâ vital signs were acquired and stored in a database using multiple, synchronised sensors: a continuous wave radar system, a phonocardiograph (PCG), an electrocardiograph (ECG), and a temperature-based respiration sensor. A hidden semi-Markov model is utilised to detect the heart sounds in the phonocardiograph and radar data and additionally, an advanced template matching (ATM) algorithm is used for state-of-the-art radar-based heartbeat detection. The feasibility of the proposed measurement principle is shown by a morphology analysis between the data acquired by radar and PCG for the dominant heart sounds S1 and S2: The correlation is 82.97 ± 11.15% for 5274 used occurrences of S1 and 80.72 ± 12.16% for 5277 used occurrences of S2. The performance of the proposed detection method is evaluated by comparing the F-scores for radar and PCG-based heart sound detection with ECG as reference: Achieving an F1 value of 92.22 ± 2.07%, the radar system approximates the score of 94.15 ± 1.61% for the PCG. The accuracy regarding the detection timing of heartbeat occurrences is analysed by means of the root-mean-square error: In comparison to the ATM algorithm (144.9 ms) and the PCG-based variant (59.4 ms), the proposed method has the lowest error value (44.2 ms). Based on these results, utilising the detected heart sounds considerably improves radar-based heartbeat monitoring, while the achieved performance is also competitive to phonocardiography.The research project GUARDIAN is supported by the Federal Ministry of Education and Research, Berlin, Germany, project grant No. 16SV7694
A Clinically Evaluated Interferometric Continuous-Wave Radar System for the Contactless Measurement of Human Vital Parameters
Vital parameters are key indicators for the assessment of health. Conventional methods rely on direct contact with the patientsâ skin and can hence cause discomfort and reduce autonomy. This article presents a bistatic 24 GHz radar system based on an interferometric six-port architecture and features a precision of 1 ”m in distance measurements. Placed at a distance of 40 cm in front of the human chest, it detects vibrations containing respiratory movements, pulse waves and heart sounds. For the extraction of the respiration rate, time-domain approaches like autocorrelation, peaksearch and zero crossing rate are compared to the Fourier transform, while template matching and a hidden semi-Markov model are utilized for the detection of the heart rate from sphygmograms and heart sounds. A medical study with 30 healthy volunteers was conducted to collect 5.5 h of data, where impedance cardiogram and electrocardiogram were used as gold standard for synchronously recording respiration and heart rate, respectively. A low root mean square error for the breathing rate (0.828 BrPM) and a high overall F1 score for heartbeat detection (93.14%) could be achieved using the proposed radar system and signal processing