1,270 research outputs found

    Transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults.

    Get PDF
    BACKGROUND: This is the first update of a Cochrane review published in Issue 5, 2010 on transcutaneous electrical nerve stimulation (TENS) for phantom pain and stump pain following amputation in adults. Pain may present in a body part that has been amputated (phantom pain) or at the site of amputation (stump pain), or both. Phantom pain and stump pain are complex and multidimensional and the underlying pathophysiology remains unclear. The condition remains a severe burden for those who are affected by it. The mainstay treatments are predominately pharmacological, with increasing acknowledgement of the need for non-drug interventions. TENS has been recommended as a treatment option but there has been no systematic review of available evidence. Hence, the effectiveness of TENS for phantom pain and stump pain is currently unknown. OBJECTIVES: To assess the analgesic effectiveness of TENS for the treatment of phantom pain and stump pain following amputation in adults. SEARCH METHODS: For the original version of the review we searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, PsycINFO, AMED, CINAHL, PEDRO and SPORTDiscus (February 2010). For this update, we searched the same databases for relevant randomised controlled trials (RCTs) from 2010 to 25 March 2015. SELECTION CRITERIA: We only included RCTs investigating the use of TENS for the management of phantom pain and stump pain following an amputation in adults. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. We planned that where available and appropriate, data from outcome measures were to be pooled and presented as an overall estimate of the effectiveness of TENS. MAIN RESULTS: In the original review there were no RCTs that examined the effectiveness of TENS for the treatment of phantom pain and stump pain in adults. For this update, we did not identify any additional RCTs for inclusion. AUTHORS' CONCLUSIONS: There were no RCTs to judge the effectiveness of TENS for the management of phantom pain and stump pain. The published literature on TENS for phantom pain and stump pain lacks the methodological rigour and robust reporting needed to confidently assess its effectiveness. Further RCT evidence is required before an assessment can be made. Since publication of the original version of this review, we have found no new studies and our conclusions remain unchanged

    Morphology and connectivity of parabrachial and cortical inputs to gustatory thalamus in rats

    Full text link
    The ventroposterior medialis parvocellularis (VPMpc) nucleus of the thalamus, the thalamic relay nucleus for gustatory sensation, receives primary input from the parabrachial nucleus, and projects to the insular cortex. To reveal the unique properties of the gustatory thalamus in comparison with archetypical sensory relay nuclei, this study examines the morphology of synaptic circuitry in the VPMpc, focusing on parabrachiothalamic driver input and corticothalamic feedback. Anterogradely visualized parabrachiothalamic fibers in the VPMpc bear large swellings. At electron microscope resolution, parabrachiothalamic axons are myelinated and make large boutons, forming multiple asymmetric, adherent, and perforated synapses onto large‐caliber dendrites and dendrite initial segments. Labeled boutons contain dense‐core vesicles, and they resemble a population of terminals within the VPMpc containing calcitonin gene‐related peptide. As is typical of primary inputs to other thalamic nuclei, parabrachiothalamic terminals are over five times larger than other inputs, while constituting only 2% of all synapses. Glomeruli and triadic arrangements, characteristic features of other sensory thalamic nuclei, are not encountered. As revealed by anterograde tracer injections into the insular cortex, corticothalamic projections in the VPMpc form a dense network of fine fibers bearing small boutons. Corticothalamic terminals within the VPMpc were also observed to synapse on cells that were retrogradely filled from the same injections. The results constitute an initial survey describing unique anatomical properties of the rodent gustatory thalamus. J. Comp. Neurol. 523:139–161, 2015. Β© 2014 Wiley Periodicals, Inc. Using biotinylated tract tracers and light and electron microscopy, the authors provide quantitative ultrastructural characterization of two inputs that arrive to the gustatory thalamic nucleus (ventroposterior medialis parvocellularis nucleus [VPMpc]): parabrachiothalamic axons that bring the primary input, and corticothalamic axons that provide the feedback input.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109654/1/cne23673.pd

    Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat

    Get PDF
    In active sensation, sensory information is acquired via movements of sensory organs; rats move their whiskers repetitively to scan the environment, thus detecting, localizing, and identifying objects. Sensory information, in turn, affects future motor movements. How this motor-sensory-motor functional loop is implemented across anatomical loops of the whisker system is not yet known. While inducing artificial whisking in anesthetized rats, we recorded the activity of individual neurons from three thalamic nuclei of the whisker system, each belonging to a different major afferent pathway: paralemniscal, extralemniscal (a recently discovered pathway), or lemniscal. We found that different sensory signals related to active touch are conveyed separately via the thalamus by these three parallel afferent pathways. The paralemniscal pathway conveys sensor motion (whisking) signals, the extralemniscal conveys contact (touch) signals, and the lemniscal pathway conveys combined whisking–touch signals. This functional segregation of anatomical pathways raises the possibility that different sensory-motor processes, such as those related to motion control, object localization, and object identification, are implemented along different motor-sensory-motor loops

    Development of neurons in the ectostriatum of normal and monocularly deprived zebra finches: a quantitative Golgi study

    Get PDF
    Herrmann K, Bischof H-J. Development of neurons in the ectostriatum of normal and monocularly deprived zebra finches: a quantitative Golgi study. The Journal of Comparative Neurology. 1988;277(1):141-154.The postnatal development of the main neuron type in the ectostriatum, the telencephalic station of the tectofugal pathway, was followed in normally reared and monocularly deprived zebra finches by using the Golgi method. Three parameters were investigated: dendritic field radius, branching index, and spine density. The results show that all three exhibit the same developmental trend - namely, an increase from day 5 until day 20, followed by a subsequent reduction until adulthood (>100 days). Monocular deprivation from birth until day 20, 40, or at least 100 does not seem to interfere with the development of the dendritic field radius or branching index. Clear changes in spine density result from depriving the birds for at least 40 days. In these birds, neurons in the deprived hemisphere bear significantly fewer spines than those in the nondeprived hemisphere, which is mainly due to a lack of normally occurring spine reduction in the nondeprived hemisphere rather than to spine reduction in the deprived hemisphere

    Patients' perceived needs for allied health, and complementary and alternative medicines for low back pain: A systematic scoping review

    Get PDF
    Objectives: Allied health and complementary and alternative medicines (CAM) are therapeutic therapies commonly accessed by consumers to manage low back pain (LBP). We aimed to identify the literature regarding patients' perceived needs for physiotherapy, chiropractic therapy and CAM for the management of LBP. Methods: A systematic scoping review of MEDLINE, EMBASE, CINAHL and PsycINFO (1990-2016) was conducted to identify studies examining patients' perceived needs for allied health and CAM for LBP. Data regarding study design and methodology were extracted. Areas of patients' perceived need for allied health and CAM were aggregated. Results: Forty-four studies from 2202 were included: 25 qualitative, 18 quantitative and 1 mixed-methods study. Three areas of need emerged: (i) physiotherapy was viewed as important, particularly when individually tailored. However, patients had concerns about adherence, adverse outcomes and correct exercise technique. (ii) Chiropractic therapy was perceived to be effective and needed by some patients, but others were concerned about adverse outcomes. (iii) An inconsistent need for CAM was identified with some patients perceiving a need, while others questioning the legitimacy and short-term duration of these therapies. Conclusions: Our findings regarding patients' perceived needs for allied health and CAM for LBP may assist in informing development of more patient-centred guidelines and service models for LBP. Understanding patients' concerns regarding active-based physiotherapy, which is recommended in most guidelines, and issues surrounding chiropractic and CAM, which are generally not, may help inform management that better aligns patient's perceived needs with effective treatments, to improve outcomes for both patients and the health-care system

    Massage Therapy for Osteoarthritis of the Knee: A Randomized Dose-Finding Trial

    Get PDF
    In a previous trial of massage for osteoarthritis (OA) of the knee, we demonstrated feasibility, safety and possible efficacy, with benefits that persisted at least 8 weeks beyond treatment termination.We performed a RCT to identify the optimal dose of massage within an 8-week treatment regimen and to further examine durability of response. Participants were 125 adults with OA of the knee, randomized to one of four 8-week regimens of a standardized Swedish massage regimen (30 or 60 min weekly or biweekly) or to a Usual Care control. Outcomes included the Western Ontario and McMaster Universities Arthritis Index (WOMAC), visual analog pain scale, range of motion, and time to walk 50 feet, assessed at baseline, 8-, 16-, and 24-weeks.WOMAC Global scores improved significantly (24.0 points, 95% CI ranged from 15.3-32.7) in the 60-minute massage groups compared to Usual Care (6.3 points, 95% CI 0.1-12.8) at the primary endpoint of 8-weeks. WOMAC subscales of pain and functionality, as well as the visual analog pain scale also demonstrated significant improvements in the 60-minute doses compared to usual care. No significant differences were seen in range of motion at 8-weeks, and no significant effects were seen in any outcome measure at 24-weeks compared to usual care. A dose-response curve based on WOMAC Global scores shows increasing effect with greater total time of massage, but with a plateau at the 60-minute/week dose.Given the superior convenience of a once-weekly protocol, cost savings, and consistency with a typical real-world massage protocol, the 60-minute once weekly dose was determined to be optimal, establishing a standard for future trials.ClinicalTrials.gov NCT00970008

    Low Density Lipoproteins as Circulating Fast Temperature Sensors

    Get PDF
    Background: The potential physiological significance of the nanophase transition of neutral lipids in the core of low density lipoprotein (LDL) particles is dependent on whether the rate is fast enough to integrate small (62uC) temperature changes in the blood circulation. Methodology/Principal Findings: Using sub-second, time-resolved small-angle X-ray scattering technology with synchrotron radiation, we have monitored the dynamics of structural changes within LDL, which were triggered by temperature-jumps and-drops, respectively. Our findings reveal that the melting transition is complete within less than 10 milliseconds. The freezing transition proceeds slowly with a half-time of approximately two seconds. Thus, the time period over which LDL particles reside in cooler regions of the body readily facilitates structural reorientation of the apolar core lipids. Conclusions/Significance: Low density lipoproteins, the biological nanoparticles responsible for the transport of cholesterol in blood, are shown to act as intrinsic nano-thermometers, which can follow the periodic temperature changes during blood circulation. Our results demonstrate that the lipid core in LDL changes from a liquid crystalline to an oily state within fractions of seconds. This may, through the coupling to the protein structure of LDL, have important repercussions o
    • …
    corecore