42 research outputs found

    The Impact of Cluster Structure and Dynamical State on Scatter in the Sunyaev-Zel'dovich Flux-Mass Relation

    Full text link
    Cosmological constraints from cluster surveys rely on accurate mass estimates from the mass-observable relations. In order to avoid systematic biases and reduce uncertainties, we study the form and physical origin of the intrinsic scatter about the mean Sunyaev-Zel'dovich (SZ) flux-mass relation using a hydrodynamical simulation of galaxy cluster formation. We examine the assumption of lognormal scatter and detect non-negligible positive skewness and kurtosis (> 0.5) for a wide range of limiting masses and redshifts. These higher-order moments should be included in the parametrization of scatter in order not to bias cosmological constraints. We investigate the sources of the scatter by correlating it with measures of cluster morphology, halo concentration, and dynamical state, and we quantify the individual contribution from each source. We find that statistically the impact of dynamical state is weak, so the selection bias due to mergers is negligible. On the other hand, there is a strong correlation between the scatter and halo concentration, which can be used to reduce the scatter significantly (from 12.07% to 7.34% or by ~40% for clusters at z = 0). We also show that a cross-calibration by combining information from X-ray followups can be used to reduce the scatter in the flux-mass relation and also identify outliers in both X-ray and SZ cluster surveys.Comment: 14 pages, 12 figures; accepted for publication in Ap

    ASOHF: a new adaptive spherical overdensity halo finder

    Full text link
    We present and test a new halo finder based on the spherical overdensity (SO) method. This new adaptive spherical overdensity halo finder (ASOHF) is able to identify dark matter haloes and their substructures (subhaloes) down to the scales allowed by the analysed simulations. The code has been especially designed for the adaptive mesh refinement cosmological codes, although it can be used as a stand-alone halo finder for N-body codes. It has been optimised for the purpose of building the merger tree of the haloes. In order to verify the viability of this new tool, we have developed a set of bed tests that allows us to estimate the performance of the finder. Finally, we apply the halo finder to a cosmological simulation and compare the results obtained to those given by other well known publicly available halo finders.Comment: Latex format, 16 pages, 11 postscript figures, accepted for publication in Astronomy and Astrophysic

    Properties of Dark Matter Haloes and their Correlations: the Lesson from Principal Component Analysis

    Full text link
    We study the correlations between the structural parameters of dark matter haloes using Principal Component Analysis (PCA). We consider a set of eight parameters, six of which are commonly used to characterize dark matter halo properties: mass, concentration, spin, shape, overdensity, and the angle (ΦL\Phi_L) between the major axis and the angular momentum vector. Two additional parameters (\x_{off} and ρrms\rho_{rms}) are used to describe the degree of `relaxedness' of the halo. We find that we can account for much of the variance of these properties with halo mass and concentration, on the one hand, and halo relaxedness on the other. Nonetheless, three principle components are usually required to account for most of the variance. We argue that halo mass is not as dominant as expected, which is a challenge for halo occupation models and semi-analytic models that assume that mass determines other halo (and galaxy) properties. In addition, we find that the angle ΦL\Phi_L is not significantly correlated with other halo parameters, which may present a difficulty for models in which galaxy disks are oriented in haloes in a particular way. Finally, at fixed mass, we find that a halo's environment (quantified by the large-scale overdensity) is relatively unimportant.Comment: 14 pages, 8 figures; minor revisions; MNRAS, in pres

    Numerical Modelling of the Vertical Structure and Dark Halo Parameters in Disc Galaxies

    Full text link
    The non-linear dynamics of bending instability and vertical structure of a galactic stellar disc embedded into a spherical halo are studied with N-body numerical modelling. Development of the bending instability in stellar galactic disc is considered as the main factor that increases the disc thickness. Correlation between the disc vertical scale height and the halo-to-disc mass ratio is predicted from the simulations. The method of assessment of the spherical-to-disc mass ratio for edge-on spiral galaxies with small bulges is considered. Modelling of eight edge-on galaxies: NGC 891, NGC 4738, NGC 5170, UGC 6080, UGC 7321, UGC 8286, UGC 9422 and UGC 9556 is performed. Parameters of stellar discs, dark haloes and bulges are estimated. The lower limit of the dark-to-luminous mass ratio in our galaxies is of the order of 1 within the limits of their stellar discs. The dark haloes dominate by mass in the galaxies with very thin stellar discs (NGC 5170, UGC 7321 and UGC 8286).Comment: Accepted by the Astronomische Nachrichte

    Clues on the origin of galactic angular momentum from looking at galaxy pairs

    Full text link
    We search for correlations between the spin in pairs of spiral galaxies, to study if the angular momentum gain for each galaxy was the result of tidal torques imprint by the same tidal field. To perform our study we made use of a sample of galaxy pairs identified using the Sloan Digital Sky Survey. We find a weak, but statistically significant correlation between the spin magnitude of neighbouring galaxies, but no clear alignment between their orientation. We show that events such as interactions with close neighbours play an important role in the value of the spin for the final configuration, as we find these interactions tend to reduce the value of the λ\lambda spin parameter of late-type galaxies considerably, with dependence on the morphology of the neighbour. This implies that the original tidal field for each pair could have been similar, but the redistribution of angular momentum at later stages of evolution is important.Comment: 10 pages, 4 figures, 1 table. Replaced to match the version accepted for publication in MNRA

    Galaxy subgroups in galaxy clusters

    Full text link
    Galaxies which fall into clusters as part of the same infall halo can retain correlations due to their shared origin. N-body simulations are used to study properties of such galaxy subgroups within clusters, including their richnesses and prevalence. The sizes, densities and velocity dispersions of all subgroups with >= 8 galaxies are found and compared to those of the host clusters. The largest galaxy subgroup provides a preferred direction in the cluster and is compared to other preferred directions in the cluster. Scatter in cluster mass measurements (via five observables), along ~ 96 lines of sight, is compared to the relation of the line of sight to this preferred direction: scatter in cluster velocity dispersion measurements show the strongest correlation. The Dressler-Shectman test (Dressler & Shectman 1988), is applied to these clusters, to see whether the substructure it identifies is related to these subgroups. The results for any specific line of sight seem noisy; however, clusters with large subgroups tend to have a higher fraction of lines of sight where the test detects substructure.Comment: 12 pages, final version for publication with helpful comments from referee and others include

    Spin and structural halo properties at high redshift in a LCDM Universe

    Full text link
    In this paper, we examine in detail the key structural properties of high redshift dark matter haloes as a function of their spin parameter. We perform and analyze high resolution cosmological simulations of the formation of structure in a LCDM Universe. We study the mass function, ellipticities, shapes, density profiles, rotation curves and virialization for a large sample of dark matter haloes from z = 15 - 6. We also present detailed convergence tests for individual haloes. We find that high spin haloes have stronger clustering strengths (up to 25%) at all mass and redshift ranges at these early epochs. High redshift spherical haloes are also up to 50% more clustered than aspherical haloes. High spin haloes at these redshifts are also preferentially found in high density environments, and have more neighbors than their low spin counterparts. We report a systematic offset in the peak of the circular velocity curves for high and low spin haloes of the same mass. Therefore, estimating halo masses without knowledge of the spin, using only the circular velocity can yield errors of up to 40%. The strong dependence of key structural properties on spin that we report here likely have important implications for studies of star formation and feedback from these galaxies.Comment: 14 pages, 10 figures. Accepted to MNRAS

    The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass

    Full text link
    We present a non-parametric, empirically based, model for associating galaxy luminosities with halo/subhalo masses, based on a self-consistent treatment of subhalo mass loss and the subhalo mass function. We find that, at high mass, the mass-luminosity relation is almost independent of the actual luminosity function considered, when luminosity is scaled by the characteristic luminosity L*. Additionally, the shape of the total halo luminosity depends on the slope of the subhalo mass function. For these high mass, cluster sized haloes, we find that total luminosity scales as L_tot ~ M^0.88, while the luminosity of the first brightest galaxy has a much weaker dependence on halo mass, L_1 ~ M^0.28, in good agreement with observations and previous results. At low mass, the resulting slope of the mass-luminosity relation depends strongly of the faint end slope of the luminosity function, and we obtain a steep relation, with approximately L ~ M^4.5 in the K-band. The average number of galaxies per halo/cluster is also in very good agreement with observations, scaling as M^0.9. In general, we obtain a good agreement with several independent sets of observational data. We find that, when comparing with observations and for a flat cosmology, the model tends to prefer lower values for Omega_m and sigma_8. Within the WMAP+SDSS concordance plane of Tegmark et al. (2004), we find best agreement around Omega_m=0.25 and sigma_8=0.8, also in very good agreement with the results of the CMB+2dF study of Sanchez et al. (2005). We also check on possible corrections for observed mass based on a comparison of the equivalent number of haloes/clusters. Additionally, we include further checks on the model results based on the mass to light ratio, the occupation number, the group luminosity function and the multiplicity function. (abridged)Comment: 16 pages, 13 figures, submitted to MNRA

    Structural Properties of Central Galaxies in Groups and Clusters

    Get PDF
    Using a representative sample of 911 central galaxies (CENs) from the SDSS DR4 group catalogue, we study how the structure of the most massive members in groups and clusters depend on (1) galaxy stellar mass (Mstar), (2) dark matter halo mass of the host group (Mhalo), and (3) their halo-centric position. We establish and thoroughly test a GALFIT-based pipeline to fit 2D Sersic models to SDSS data. We find that the fitting results are most sensitive to the background sky level determination and strongly recommend using the SDSS global value. We find that uncertainties in the background translate into a strong covariance between the total magnitude, half-light size (r50), and Sersic index (n), especially for bright/massive galaxies. We find that n depends strongly on Mstar for CENs, but only weakly or not at all on Mhalo. Less (more) massive CENs tend to be disk (spheroid)-like over the full Mhalo range. Likewise, there is a clear r50-Mstar relation for CENs, with separate slopes for disks and spheroids. When comparing CENs with satellite galaxies (SATs), we find that low mass (<10e10.75 Msun/h^2) SATs have larger median n than CENs of similar Mstar. Low mass, late-type SATs have moderately smaller r50 than late-type CENs of the same Mstar. However, we find no size differences between spheroid-like CENs and SATs, and no structural differences between CENs and SATs matched in both mass and colour. The similarity of massive SATs and CENs shows that this distinction has no significant impact on the structure of spheroids. We conclude that Mstar is the most fundamental property determining the basic structure of a galaxy. The lack of a clear n-Mhalo relation rules out a distinct group mass for producing spheroids, and the responsible morphological transformation processes must occur at the centres of groups spanning a wide range of masses. (abridged)Comment: 22 pages, 14 figures, submitted to MNRA

    Disentangling correlated scatter in cluster mass measurements

    Full text link
    The challenge of obtaining galaxy cluster masses is increasingly being addressed by multiwavelength measurements. As scatters in measured cluster masses are often sourced by properties of or around the clusters themselves, correlations between mass scatters are frequent and can be significant, with consequences for errors on mass estimates obtained both directly and via stacking. Using a high resolution 250 Mpc/h side N-body simulation, combined with proxies for observational cluster mass measurements, we obtain mass scatter correlations and covariances for 243 individual clusters along ~96 lines of sight each, both separately and together. Many of these scatters are quite large and highly correlated. We use principal component analysis (PCA) to characterize scatter trends and variations between clusters. PCA identifies combinations of scatters, or variations more generally, which are uncorrelated or non-covariant. The PCA combination of mass measurement techniques which dominates the mass scatter is similar for many clusters, and this combination is often present in a large amount when viewing the cluster along its long axis. We also correlate cluster mass scatter, environmental and intrinsic properties, and use PCA to find shared trends between these. For example, if the average measured richness, velocity dispersion and Compton decrement mass for a cluster along many lines of sight are high relative to its true mass, in our simulation the cluster's mass measurement scatters around this average are also high, its sphericity is high, and its triaxiality is low. Our analysis is based upon estimated mass distributions for fixed true mass. Extensions to observational data would require further calibration from numerical simulations, tuned to specific observational survey selection functions and systematics.Comment: 18 pages, 12 figures, final version to appear in MNRAS, helpful changes from referee and others incorporate
    corecore