1,162 research outputs found

    Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure.

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bors, E. K., Herrera, S., Morris, J. A., Jr., & Shank, T. M. Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure. Ecology and Evolution, 9(6), (2019):3306-3320, doi:10.1002/ece3.4952.Range expansions driven by global change and species invasions may have significant genomic, evolutionary, and ecological implications. During range expansions, strong genetic drift characterized by repeated founder events can result in decreased genetic diversity with increased distance from the center of the historic range, or the point of invasion. The invasion of the Indo‐Pacific lionfish, Pterois volitans, into waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural system to study rapid range expansion in an invasive marine fish with high dispersal capabilities. We report results from 12,759 single nucleotide polymorphism loci sequenced by restriction enzyme‐associated DNA sequencing for nine P. volitans sampling areas in the invaded range, including Florida and other sites throughout the Caribbean, as well as mitochondrial control region D‐loop data. Analyses revealed low to no spatially explicit metapopulation genetic structure, which is partly consistent with previous finding of little structure within ocean basins, but partly divergent from initial reports of between‐basin structure. Genetic diversity, however, was not homogeneous across all sampled sites. Patterns of genetic diversity correlate with invasion pathway. Observed heterozygosity, averaged across all loci within a population, decreases with distance from Florida while expected heterozygosity is mostly constant in sampled populations, indicating population genetic disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis and a Bayesian environmental correlation analysis, we identified 256 and 616 loci, respectively, that could be experiencing selection or genetic drift. Of these, 24 loci were shared between the two methods.We thank the many participants of the Gulf and Caribbean Fisheries Institute for providing lionfish samples from around the Caribbean region, as well as Dr. Bernard Castillo at the University of the Virgin Islands and Kristian Rogers at the Biscayne Bay National Park. We would like to acknowledge Alex Bogdanoff at NOAA, Beaufort NC, for assistance with sample acquisition; Camrin Braun at WHOI, for assistance with the calculation of oceanic distances between sites; Dr. Tom Schultz at Duke Marine Lab and Dr. Margaret Hunter at USGS for discussions concerning ongoing population genetic projects; and Jack Cook at the WHOI Graphics department for his assistance in generating maps of the study area. We would like to extend a special thank you to Dr. John Wakeley of Harvard University for assistance in the interpretation of data. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. Sequencing funding was provided in part by the PADI Foundation Grant No. 14904. Additional research support was provided by the Woods Hole Oceanographic Institution (WHOI) Ocean Ventures Fund, the Coastal Ocean Institute at WHOI, the National Science Foundation (OCE‐1131620 to TMS), and the James Education Fund for Ocean Exploration within the Ocean Exploration Institute at WHOI. Publication of this paper was supported, in part, by the Henry Mastin Graduate Student Fund administered by the Oregon State University Department of Fisheries and Wildlife. Finally, we sincerely thank the reviewers and editors who helped to strengthen this manuscript

    Mid-infrared silicon photonics

    Get PDF
    A mid-infrared silicon nanophotonic integrated circuit platform can have broad impact upon environmental monitoring, personalized healthcare, and public safety applications. Development of various mid-IR components, including optical parametric amplifiers, sources, modulators, and detectors, is reviewed

    Bekkenbanden voor acute stabilisatie van instabiele bekkenfracturen

    Get PDF
    Bekkenbanden zijn ontwikkeld voor de acute behandeling van instabiele bekkenringfracturen in de prehospitale fase. Deze behandeling is gericht op het beperken van het inwendig bloedverlies door het verkleinen van het bij bekkenfracturen toegenomen bekkenvolume en het stabiliseren van de fractuurdelen. Het effect van commercieel verkrijgbare bekkenbanden op de reductie van de symphysis pubisdiastase en de hemodynamische stabiliteit is aangetoond. Het langdurig gebruik van bekkenbanden wordt ontraden wegens toegenomen risico op het ontwikkelen van decubitus. Met name langdurige immobilisatie met een bekkenband op een traumaplank dient voorkomen te worden. In dit artikel wordt een aantal verschillende bekkenbanden besproken en wordt een casus gepresenteerd.Pelvic circumferential compression devices have been developed for initial treatment of unstable pelvic ring fractures in the prehospital situation. The treatment is aimed at achieving tamponade by reducing the increased pelvic volume and reducing the bleeding from fracture surfaces. The effect of commercially available pelvic circumferential compression devices on the reduction of symphysis pubis diastasis and the resuscitation has been proved. Prolonged use of these devices is complicated by the risk of development of pressure sores. Therefore prolonged immobilization on a spine board should be avoided. A number of different pelvic binders will be discussed in this article, which also presents a case

    Experimental free energy measurements of kinetic molecular states using fluctuation theorems

    Full text link
    Recent advances in non-equilibrium statistical mechanics and single molecule technologies make it possible to extract free energy differences from irreversible work measurements in pulling experiments. To date, free energy recovery has been focused on native or equilibrium molecular states, whereas free energy measurements of kinetic states (i.e. finite lifetime states that are generated dynamically and are metastable) have remained unexplored. Kinetic states can play an important role in various domains of physics, such as nanotechnology or condensed matter physics. In biophysics, there are many examples where they determine the fate of molecular reactions: protein and peptide-nucleic acid binding, specific cation binding, antigen-antibody interactions, transient states in enzymatic reactions or the formation of transient intermediates and non-native structures in molecular folders. Here we demonstrate that it is possible to obtain free energies of kinetic states by applying extended fluctuation relations. This is shown by using optical tweezers to mechanically unfold and refold DNA structures exhibiting intermediate and misfolded kinetic states.Comment: main paper (16 pages, 5 figures) and supplementary information (22 pages, 14 figures

    Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography

    Get PDF
    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for lightweight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore