146 research outputs found

    MILLENNIAL REPRESENTATIONS OF MEDIEVAL RELIGIOUS SCHISM IN WESTERN MEDIA: An Iconographic Analysis of Dante’s Inferno 28 and the Twenty-First Century Films Dracula Untold and Kingdom of Heaven

    Get PDF
    Dante Alighieri’s Inferno 28 is the place of the sowers of discord and scandal who are responsible for causing a split within their own communities; among them in the ninth bolge of the eighth circle is Muhammad whose mutilated body represents the division he brought to Christianity. A historical contextualization of the Inferno, however, confirms that the hostility between Christianity and Islam had emerged earlier with the rise of Islam as a political power in the seventh century. This paper examines Medieval and twenty-first century visual representations of this division within Christianity, which mirror the schism within Inferno 28. Ridley Scott’s Kingdom of Heaven (2005) and Gary Shore’s less-discussed film Dracula Untold (2014) provide a common ground to analyze the visual and verbal stimuli. In so doing, I identify the elements of naive responses to such texts, which help to minimize the conformity of the audience to classificatory thought systems, and, therefore, creates a dynamically constituted text open to multiple interpretations

    How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape

    Get PDF
    The HIV-1 TAR RNA represents a well-known paradigm to study the role of dynamics and conformational change in RNA function. This regulatory RNA changes conformation in response to binding of Tat protein and of a variety of peptidic and small molecule ligands, indicating that its conformational flexibility and intrinsic dynamics play important roles in molecular recognition. We have used 13C NMR relaxation experiments to examine changes in the motional landscape of HIV-1 TAR in the presence of three ligands of different affinity and specificity. The ligands are argininamide, a linear peptide mimic of the Tat basic domain and a cyclic peptide that potently inhibits Tat-dependent activation of transcription. All three molecules induce the same motional characteristics within the three nucleotides bulge that represents the Tat-binding site. However, the cyclic peptide has a unique motional signature in the apical loop, which represents a binding site for the essential host co-factor cyclin T1. These results suggest that all peptidic mimics of Tat induce the same dynamics in TAR within this protein binding site. However, the new cyclic peptide mimic of Tat represents a new class of ligands with a unique effect on the dynamics and the structure of the apical loop

    How binding of small molecule and peptide ligands to HIV-1 TAR alters the RNA motional landscape

    Get PDF
    The HIV-1 TAR RNA represents a well-known paradigm to study the role of dynamics and conformational change in RNA function. This regulatory RNA changes conformation in response to binding of Tat protein and of a variety of peptidic and small molecule ligands, indicating that its conformational flexibility and intrinsic dynamics play important roles in molecular recognition. We have used 13C NMR relaxation experiments to examine changes in the motional landscape of HIV-1 TAR in the presence of three ligands of different affinity and specificity. The ligands are argininamide, a linear peptide mimic of the Tat basic domain and a cyclic peptide that potently inhibits Tat-dependent activation of transcription. All three molecules induce the same motional characteristics within the three nucleotides bulge that represents the Tat-binding site. However, the cyclic peptide has a unique motional signature in the apical loop, which represents a binding site for the essential host co-factor cyclin T1. These results suggest that all peptidic mimics of Tat induce the same dynamics in TAR within this protein binding site. However, the new cyclic peptide mimic of Tat represents a new class of ligands with a unique effect on the dynamics and the structure of the apical loo

    Conserved nucleotides in an RNA essential for hepatitis B virus replication show distinct mobility patterns

    Get PDF
    The number of regulatory RNAs with identified non-canonical structures is increasing, and structural transitions often play a role in their biological function. This stimulates interest in internal motions of RNA, which can underlie structural transitions. Heteronuclear NMR relaxation measurements, which are commonly used to study internal motion, only report on local motions of few sites within the molecule. Here we have studied a 27-nt segment of the human hepatitis B virus (HBV) pregenomic RNA, which is essential for viral replication. We combined heteronuclear relaxation with the new off-resonance ROESY technique, which reports on internal motions of H,H contacts. Using off-resonance ROESY, we could for the first time detect motion of through-space H,H contacts, such as in intra-residue base-ribose contacts or inter-nucleotide contacts, both essential for NMR structure determination. Motions in non-canonical structure elements were found primarily on the sub-nanosecond timescale. Different patterns of mobility were observed among several mobile nucleotides. The most mobile nucleotides are highly conserved among different HBV strains, suggesting that their mobility patterns may be necessary for the RNA’s biological function

    Strong Correlation between SHAPE Chemistry and the Generalized NMR Order Parameter ( S 2 ) in RNA

    Get PDF
    The functions of most RNA molecules are critically dependent on the distinct local dynamics that characterize secondary structure and tertiary interactions and on structural changes that occur upon binding by proteins and small molecule ligands. Measurements of RNA dynamics at nucleotide resolution set the foundation for understanding the roles of individual residues in folding, catalysis, and ligand recognition. In favorable cases, local order in small RNAs can be quantitatively analyzed by NMR in terms of a generalized order parameter, S2. Alternatively, SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) chemistry measures local nucleotide flexibility in RNAs of any size using structure-sensitive reagents that acylate the 2'-hydroxyl position. In this work, we compare per-residue RNA dynamics, analyzed by both S2 and SHAPE, for three RNAs: the HIV-1 TAR element, the U1A protein binding site, and the Tetrahymena telomerase stem loop 4. We find a very strong correlation between the two measurements: nucleotides with high SHAPE reactivities consistently have low S2 values. We conclude that SHAPE chemistry quantitatively reports local nucleotide dynamics and can be used with confidence to analyze dynamics in large RNAs, RNA-protein complexes, and RNAs in vivo

    NMR and MD studies of the temperature-dependent dynamics of RNA YNMG-tetraloops

    Get PDF
    In a combined NMR/MD study, the temperature-dependent changes in the conformation of two members of the RNA YNMG-tetraloop motif (cUUCGg and uCACGg) have been investigated at temperatures of 298, 317 and 325 K. The two members have considerable different thermal stability and biological functions. In order to address these differences, the combined NMR/MD study was performed. The large temperature range represents a challenge for both, NMR relaxation analysis (consistent choice of effective bond length and CSA parameter) and all-atom MD simulation with explicit solvent (necessity to rescale the temperature). A convincing agreement of experiment and theory is found. Employing a principle component analysis of the MD trajectories, the conformational distribution of both hairpins at various temperatures is investigated. The ground state conformation and dynamics of the two tetraloops are indeed found to be very similar. Furthermore, both systems are initially destabilized by a loss of the stacking interactions between the first and the third nucleobase in the loop region. While the global fold is still preserved, this initiation of unfolding is already observed at 317 K for the uCACGg hairpin but at a significantly higher temperature for the cUUCGg hairpin

    Cytosine ribose flexibility in DNA: a combined NMR 13C spin relaxation and molecular dynamics simulation study

    Get PDF
    Using 13C spin relaxation NMR in combination with molecular dynamic (MD) simulations, we characterized internal motions within double-stranded DNA on the pico- to nano-second time scale. We found that the C–H vectors in all cytosine ribose moieties within the Dickerson–Drew dodecamer (5′-CGCGAATTCGCG-3′) are subject to high amplitude motions, while the other nucleotides are essentially rigid. MD simulations showed that repuckering is a likely motional model for the cytosine ribose moiety. Repuckering occurs with a time constant of around 100 ps. Knowledge of DNA dynamics will contribute to our understanding of the recognition specificity of DNA-binding proteins such as cytosine methyltransferase

    DNA mimicry by a high-affinity anti-NF-κB RNA aptamer

    Get PDF
    The binding of RNA molecules to proteins or other ligands can require extensive RNA folding to create an induced fit. Understanding the generality of this principle involves comparing structures of RNA before and after complex formation. Here we report the NMR solution structure of a 29-nt RNA aptamer whose crystal structure had previously been determined in complex with its transcription factor target, the p502 form of NF-κB. The RNA aptamer internal loop structure has pre-organized features that are also found in the complex, including non-canonical base pairing and cross-strand base stacking. Remarkably, the free RNA aptamer structure possesses a major groove that more closely resembles B-form DNA than RNA. Upon protein binding, changes in RNA structure include the kinking of the internal loop and distortion of the terminal tetraloop. Thus, complex formation involves both pre-formed and induced fit binding interactions. The high affinity of the NF-κB transcription factor for this RNA aptamer may largely be due to the structural pre-organization of the RNA that results in its ability to mimic DNA

    Preparation of selective and segmentally labeled single-stranded DNA for NMR by self-primed PCR and asymmetrical endonuclease double digestion

    Get PDF
    We demonstrate a new, efficient and easy-to-use method for enzymatic synthesis of (stereo-)specific and segmental 13C/15N/2H isotope-labeled single-stranded DNA in amounts sufficient for NMR, based on the highly efficient self-primed PCR. To achieve this, new approaches are introduced and combined. (i) Asymmetric endonuclease double digestion of tandem-repeated PCR product. (ii) T4 DNA ligase mediated ligation of two ssDNA segments. (iii) In vitro dNTP synthesis, consisting of in vitro rNTP synthesis followed by enzymatic stereo-selective reduction of the C2′ of the rNTP, and a one-pot add-up synthesis of dTTP from dUTP. The method is demonstrated on two ssDNAs: (i) a 36-nt three-way junction, selectively 13C9/15N3/2H(1′,2″,3′,4′,5′,5″)-dC labeled and (ii) a 39-nt triple-repeat three-way junction, selectively 13C9/15N3/2H(1′,2″,3′,4′,5′,5″)-dC and 13C9/15N2/2H(1′,2″,3′,4′,5′,5″)-dT labeled in segment C20-C39. Their NMR spectra show the spectral simplification, while the stereo-selective 2H-labeling in the deoxyribose of the dC-residues, straightforwardly provided assignment of their C1′–H2′ and C2′–H2′ resonances. The labeling protocols can be extended to larger ssDNA molecules and to more than two segments

    Solution structure of stem-loop α of the hepatitis B virus post-transcriptional regulatory element

    Get PDF
    Chronic hepatitis B virus (HBV) infections may lead to severe diseases like liver cirrhosis or hepatocellular carcinoma (HCC). The HBV post-transcriptional regulatory element (HPRE) facilitates the nuclear export of unspliced viral mRNAs, contains a splicing regulatory element and resides in the 3′-region of all viral transcripts. The HPRE consists of three sub-elements α (nucleotides 1151–1346), β1 (nucleotides 1347–1457) and β2 (nucleotides 1458–1582), which confer together full export competence. Here, we present the NMR solution structure (pdb 2JYM) of the stem-loop α (SLα, nucleotides 1292–1321) located in the sub-element α. The SLα contains a CAGGC pentaloop highly conserved in hepatoviruses, which essentially adopts a CUNG-like tetraloop conformation. Furthermore, the SLα harbours a single bulged G residue flanked by A-helical regions. The structure is highly suggestive of serving two functions in the context of export of unspliced viral RNA: binding sterile alpha motif (SAM-) domain containing proteins and/or preventing the utilization of a 3′-splice site contained within SLα
    corecore