247 research outputs found

    Central nervous system antiretroviral efficacy in HIV infection: a qualitative and quantitative review and implications for future research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is conflicting information as to whether antiretroviral drugs with better central nervous system (CNS) penetration (neuroHAART) assist in improving neurocognitive function and suppressing cerebrospinal fluid (CSF) HIV RNA. The current review aims to better synthesise existing literature by using an innovative two-phase review approach (qualitative and quantitative) to overcome methodological differences between studies.</p> <p>Methods</p> <p>Sixteen studies, all observational, were identified using a standard citation search. They fulfilled the following inclusion criteria: conducted in the HAART era; sample size > 10; treatment effect involved more than one antiretroviral and none had a retrospective design. The qualitative phase of review of these studies consisted of (i) a blind assessment rating studies on features such as sample size, statistical methods and definitions of neuroHAART, and (ii) a non-blind assessment of the sensitivity of the neuropsychological methods to HIV-associated neurocognitive disorder (HAND). During quantitative evaluation we assessed the statistical power of studies, which achieved a high rating in the qualitative analysis. The objective of the power analysis was to determine the studies ability to assess their proposed research aims.</p> <p>Results</p> <p>After studies with at least three limitations were excluded in the qualitative phase, six studies remained. All six found a positive effect of neuroHAART on neurocognitive function or CSF HIV suppression. Of these six studies, only two had statistical power of at least 80%.</p> <p>Conclusions</p> <p>Studies assessed as using more rigorous methods found that neuroHAART was effective in improving neurocognitive function and decreasing CSF viral load, but only two of those studies were adequately statistically powered. Because all of these studies were observational, they represent a less compelling evidence base than randomised control trials for assessing treatment effect. Therefore, large randomised trials are needed to determine the robustness of any neuroHAART effect. However, such trials must be longitudinal, include the full spectrum of HAND, ideally carefully control for co-morbidities, and be based on optimal neuropsychology methods.</p

    Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals

    Get PDF
    Chemokines influence HIV neuropathogenesis by affecting the HIV life cycle, trafficking of macrophages into the nervous system, glial activation, and neuronal signaling and repair processes; however, knowledge of their relationship to in vivo measures of cerebral injury is limited. The primary objective of this study was to determine the relationship between a panel of chemokines in cerebrospinal fluid (CSF) and cerebral metabolites measured by proton magnetic resonance spectroscopy (MRS) in a cohort of HIV-infected individuals. One hundred seventy-one stored CSF specimens were assayed from HIV-infected individuals who were enrolled in two ACTG studies that evaluated the relationship between neuropsychological performance and cerebral metabolites. Concentrations of six chemokines (fractalkine, IL-8, IP-10, MCP-1, MIP-1ÎČ, and SDF-1) were measured and compared with cerebral metabolites individually and as composite neuronal, basal ganglia, and inflammatory patterns. IP-10 and MCP-1 were the chemokines most strongly associated with individual cerebral metabolites. Specifically, (1) higher IP-10 levels correlated with lower N-acetyl aspartate (NAA)/creatine (Cr) ratios in the frontal white matter and higher MI/Cr ratios in all three brain regions considered and (2) higher MCP-1 levels correlated with lower NAA/Cr ratios in frontal white matter and the parietal cortex. IP-10, MCP-1, and IL-8 had the strongest associations with patterns of cerebral metabolites. In particular, higher levels of IP-10 correlated with lower neuronal pattern scores and higher basal ganglia and inflammatory pattern scores, the same pattern which has been associated with HIV-associated neurocognitive disorders (HAND). Subgroup analysis indicated that the effects of IP-10 and IL-8 were influenced by effective antiretroviral therapy and that memantine treatment may mitigate the neuronal effects of IP-10. This study supports the role of chemokines in HAND and the validity of MRS as an assessment tool. In particular, the findings identify relationships between the immune response—particularly an interferon-inducible chemokine, IP-10—and cerebral metabolites and suggest that antiretroviral therapy and memantine modify the impact of the immune response on neurons

    The Role of Cadmium and Nickel in Estrogen Receptor Signaling and Breast Cancer: Metalloestrogens or Not?

    Get PDF
    During the last half-century, incidences of breast cancer have increased globally. Various factors —genetic and environmental— have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, lowlevel exposure to certain heavy metals (i.e. cadmium and nickel), can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens— metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a wellestablished risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether or not these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis

    Selective Down-Regulation of Nuclear Poly(ADP-Ribose) Glycohydrolase

    Get PDF
    The formation of ADP-ribose polymers on target proteins by poly(ADP-ribose) polymerases serves a variety of cell signaling functions. In addition, extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) is a dominant cause of cell death in ischemia-reperfusion, trauma, and other conditions. Poly(ADP-ribose) glycohydrolase (PARG) degrades the ADP-ribose polymers formed on acceptor proteins by PARP-1 and other PARP family members. PARG exists as multiple isoforms with differing subcellular localizations, but the functional significance of these isoforms is uncertain.Primary mouse astrocytes were treated with an antisense phosphorodiamidate morpholino oligonucleotide (PMO) targeted to exon 1 of full-length PARG to suppress expression of this nuclear-specific PARG isoform. The antisense-treated cells showed down-regulation of both nuclear PARG immunoreactivity and nuclear PARG enzymatic activity, without significant alteration in cytoplasmic PARG activity. When treated with the genotoxic agent MNNG to induced PARP-1 activation, the antisense-treated cells showed a delayed rate of nuclear PAR degradation, reduced nuclear condensation, and reduced cell death.These results support a preferentially nuclear localization for full-length PARG, and suggest a key role for this isoform in the PARP-1 cell death pathway

    Soluble CD14 in cerebrospinal fluid is associated with markers of inflammation and axonal damage in untreated HIV-infected patients: a retrospective cross-sectional study

    Get PDF
    Background: HIV-associated cognitive impairment has declined since the introduction of combination antiretroviral treatment (cART). However, milder forms of cognitive impairment persist. Inflammation in the cerebrospinal fluid (CSF) has been associated with cognitive impairment, and CSF neurofilament light chain protein (NFL) and CSF neopterin concentrations are increased in those patients. Microbial translocation in HIV infection has been suggested to contribute to chronic inflammation, and lipopolysaccharide (LPS) and soluble CD14 (sCD14) are markers of microbial translocation and the resulting monocyte activation, respectively. We hypothesised that microbial translocation contributes to inflammation and axonal damage in the central nervous system (CNS) in untreated HIV infection. / Methods: We analyzed paired samples of plasma and CSF from 62 HIV-infected, untreated patients without cognitive symptoms from Sahlgrenska University Hospital, Gothenburg, Sweden. Measurements of neopterin and NFL in CSF were available from previous studies. Plasma and CSF sCD14 was measured using ELISA (R&D, Minneapolis, MN), and plasma and CSF LPS was measured using LAL colorimetric assay (Lonza, Walkersville, MD, USA). Univariate and multivariate regression analyses were performed. / Results: LPS in plasma was associated with plasma sCD14 (r = 0.31, P = 0.015), and plasma sCD14 was associated with CSF sCD14 (r = 0.32, P = 0.012). Furthermore, CSF sCD14 was associated with NFL (r = 0.32, P = 0.031) and neopterin (r = 0.32, P = 0.012) in CSF. LPS was not detectable in CSF. In a multivariate regression model CSF sCD14 remained associated with NFL and neopterin after adjusting for age, CD4+ cell count, and HIV RNA in CSF. / Conclusions: In a group of untreated, HIV-infected patients LPS was associated with sCD14 in plasma, and plasma sCD14 was associated CSF sCD14. CSF sCD14 were associated with markers of CNS inflammation and axonal damage. This suggest that microbial translocation might be a driver of systemic and CNS inflammation. However, LPS was not detectable in the CSF, and since sCD14 is a marker of monocyte activation sCD14 may be increased due to other causes than microbial translocation. Further studies regarding cognitive impairment and biomarkers are warranted to fully understand causality

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Robust Biomarkers: Methodologically Tracking Causal Processes in Alzheimer’s Measurement

    Get PDF
    In biomedical measurement, biomarkers are used to achieve reliable prediction of, and useful causal information about patient outcomes while minimizing complexity of measurement, resources, and invasiveness. A biomarker is an assayable metric that discloses the status of a biological process of interest, be it normative, pathophysiological, or in response to intervention. The greatest utility from biomarkers comes from their ability to help clinicians (and researchers) make and evaluate clinical decisions. In this paper we discuss a specific methodological use of clinical biomarkers in pharmacological measurement: Some biomarkers, called ‘surrogate markers’, are used to substitute for a clinically meaningful endpoint corresponding to events and their penultimate risk factors. We confront the reliability of clinical biomarkers that are used to gather information about clinically meaningful endpoints. Our aim is to present a systematic methodology for assessing the reliability of multiple surrogate markers (and biomarkers in general). To do this we draw upon the robustness analysis literature in the philosophy of science and the empirical use of clinical biomarkers. After introducing robustness analysis we present two problems with biomarkers in relation to reliability. Next, we propose an intervention-based robustness methodology for organizing the reliability of biomarkers in general. We propose three relevant conditions for a robust methodology for biomarkers: (R1) Intervention-based demonstration of partial independence of modes: In biomarkers partial independence can be demonstrated through exogenous interventions that modify a process some number of “steps” removed from each of the markers. (R2) Comparison of diverging and converging results across biomarkers: By systematically comparing partially-independent biomarkers we can track under what conditions markers fail to converge in results, and under which conditions they successfully converge. (R3) Information within the context of theory: Through a systematic cross-comparison of the markers we can make causal conclusions as well as eliminate competing theories. We apply our robust methodology to currently developing Alzheimer’s research to show its usefulness for making causal conclusions

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10–500 s in a frequency band of 40–1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10−5 and 9.4×10−4  Mpc−3 yr−1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves
    • 

    corecore