25 research outputs found

    The Shared Preference Niche of Sympatric Asiatic Black Bears and Sun Bears in a Tropical Forest Mosaic

    Get PDF
    Ecologically similar species often coexist by partitioning use of habitats or resources. Such partitioning can occur through divergent or shared niches. We investigated overlap in habitat use and spatial co-occurrence by sympatric Asiatic black bears and sun bears in three habitats in Thailand, and thereby assessed which niche model best accounts for their coexistence.We used density of species-specific signs to assess habitat use. Signs of both bear species occurred in all three habitats, and on >60% of sampling transects. Both species fed mostly on fruit; insect feeding signs were uncommon, and were mostly from sun bears. Significant differences in habitat use occurred only in montane forest, the habitat in which fruit was most abundant; incidence of black bear sign there was six times higher than that of sun bears. Habitat use was similar between the two species in the other habitats, which comprised 85% of the area. Of 10 habitat attributes examined, fruiting tree density was the best predictor of occurrence for both species. Models that included interspecific competition (fresh foraging activity of the other species) were less supported than the top models without competition.Bear species co-occurrence at both coarse and fine spatial scales and use of the same resources (fruit trees) indicated common niche preferences. However, their habitat use differed in ways expected from their physical differences: larger black bears dominated in the most fruit-rich habitat, and smaller sun bears used less-preferred insects. These results indicate broadly overlapping fundamental niches combined with asymmetric competition—features consistent with the concept of shared preference niches. This model of the niche has received little attention in ecology, but appears to be relatively common in nature

    Identifying conservation priorities for an understudied species in decline: Golden cats (Catopuma temminckii) in mainland Tropical Asia

    Get PDF
    Abstract Identifying conservation priorities for an understudied species can be challenging, as the amount and type of data available to work with are often limited. Here, we demonstrate a flexible workflow for identifying priorities for such data-limited species, focusing on the little-studied Asian golden cat (Catopuma temminckii) in mainland Tropical Asia. Using recent occurrence records, we modeled the golden cat's expected area of occurrence and identified remaining habitat strongholds (i.e., large intact areas with moderate-to-high expected occurrence). We then classified these strongholds by recent camera-trap survey status (from a literature review) and near-future threat status (based on publicly available forest loss projections and Bayesian Belief Network derived estimates of hunting-induced extirpation risk) to identify conservation priorities. Finally, we projected the species' expected area of occurrence in the year 2000, approximately three generations prior to today, to define past declines and better evaluate the species' current conservation status. Lower levels of hunting-induced extirpation risk and higher levels of closed-canopy forest cover were the strongest predictors of recent camera-trap records. Our projections suggest a 68% decline in area with moderate-to-high expected occurrence between 2000 and 2020, with a further 18% decline predicted over the next 20 years. Past and near-future declines were primarily driven by cumulatively increasing levels of hunting-induced extirpation risk, suggesting assessments of conservation status based solely on declines in habitat may underestimate actual population declines. Of the 40 remaining habitat strongholds, 77.5% were seriously threatened by forest loss and hunting. Only 52% of threatened strongholds had at least one site surveyed, compared to 100% of low-to-moderate threat strongholds, thus highlighting an important knowledge gap concerning the species' current distribution and population status. Our results suggest the golden cat has experienced, and will likely continue to experience, considerable population declines and should be considered for up-listing to a threatened category (i.e., VU/EN) under criteria A2c of the IUCN Red List

    The global abundance of tree palms

    Get PDF
    Aim Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location Tropical and subtropical moist forests. Time period Current. Major taxa studied Palms (Arecaceae). Methods We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    The global abundance of tree palms

    Get PDF
    Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change. Location: Tropical and subtropical moist forests. Time period: Current. Major taxa studied: Palms (Arecaceae). Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co‐occurring non‐palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure. Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long‐term climate stability. Life‐form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non‐tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above‐ground biomass, but the magnitude and direction of the effect require additional work. Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical forests

    Habitat attributes at sites where fresh signs (<3 months) of sun bears and black bears were detected in Thung Yai Naresuan Wildlife Sanctuary, Thailand, 2001–2003.

    No full text
    <p><i>P</i>-values are from Mann-Whitney tests of differences between bear species. Overall habitat values are means from all transects in that habitat. Local scale attributes reflect conditions immediately around transects; landscape scale attributes reflect the surrounding environment in home-range sized circles around transects. No significant differences between species were detected in any habitat. MDF: mixed deciduous forest; SEF: semi-evergreen forest; MEF: montane evergreen forest; SEF/MEF: combined evergreen forest.</p
    corecore