66 research outputs found

    An Integrated Approach of RSM and MOGA for the Prediction of Temperature Rise and Surface Roughness in the End Milling of Al 6061-T6

    Get PDF
    Cutting temperature, machining parameters, workpiece material, and cutting tool geometry have a significant influence on the achievement of the desired quality of product at a satisfactory cost. The aim of the present study was to develop an empirical model for predicting temperature rise (Tr) and surface roughness (Ra) in terms of spindle speed (N), feed rate (F), axial depth of cut (Da), radial depth of cut (Dr), and radial rake angle (Îł). The experiment was conducted on Al 6061-T6 by using a high-speed steel (HSS) end cutter based on the central composite design of response surface methodology (RSM). A second order mathematical model in terms of machining parameters was developed. The Analysis of Variance (ANOVA) was used to study the performance characteristics in the machining process. The values of Prob>F less than 0.05 indicate that the model terms are significant. The experimental results indicate that the formation of surface defect in the end milling of Al 6061-T6 results from the re-deposited tool material, plucking, feed marks, micro-pits, and chip layer formation. The high quality of the surface texture is obtained in the combined conditions of high spindle speed, optimal feed rate, lower axial and radial depths of cut, and radial rake angle. Multi objective genetic algorithm (MOGA) has been applied to optimize the machining parameters that simultaneously minimize temperature rise and surface roughness. A set of Pareto-optimal solutions provides flexibility to the manufacturer and the process engineer to select the best setting based on the quality requirements and applications. A verification and validation process shows that the predicted values were found to be in good agreement with the observed values

    Exotic quantum phases and phase transitions in correlated matter

    Full text link
    We present a pedagogical overview of recent theoretical work on unconventional quantum phases and quantum phase transitions in condensed matter systems. Strong correlations between electrons can lead to a breakdown of two traditional paradigms of solid state physics: Landau's theories of Fermi liquids and phase transitions. We discuss two resulting "exotic" states of matter: topological and critical spin liquids. These two quantum phases do not display any long-range order even at zero temperature. In each case, we show how a gauge theory description is useful to describe the new concepts of topological order, fractionalization and deconfinement of excitations which can be present in such spin liquids. We make brief connections, when possible, to experiments in which the corresponding physics can be probed. Finally, we review recent work on deconfined quantum critical points. The tone of these lecture notes is expository: focus is on gaining a physical picture and understanding, with technical details kept to a minimum.Comment: 22 pages, 15 figures; Notes of the Lectures at the International Summer School on Fundamental Problems in Statistical Physics XI, September 2005, Leuven, Belgium; High-resolution version available at http://w3-phystheo.ups-tlse.fr/~alet/leuven.htm

    A REVIEW ON GREEN-SYNTHESIS OF CERIUM OXIDE NANOPARTICLES: FOCUS ON CENTRAL NERVOUS SYSTEM DISORDERS

    Get PDF
    Green Synthesized Cerium oxide nanoparticles (CeO2NPs) have sparked a lot of interest in numerous disciplines of science and Technology during the past decade. A wide range of biological resources has been employed in synthesizing CeO2NPs, including plants, microorganisms, and other biological products. Biosynthesis procedures, current knowledge, and prospects in the synthesis of Green synthesis of CeO2NPs are also discussed. Neurodegenerative diseases, such as aging, trauma, Alzheimer's and Parkinson's, and other neurological problems, are linked to higher oxidative stress and superoxide radicals generation. Cerium oxide nanoparticles' antioxidant properties suggest that they may be useful in the treatment of CNS diseases. The biological antioxidant benefits of cerium oxide nanoparticles on extending cell and organism lifespan, preventing a free radical attack, and preventing trauma-induced neurological damage are discussed in this section. CeO2NPs, an aspect of nanotechnology, would emerge as a novel drug delivery carrier through therapeutic strategies. In several diseases oxidative stress and inflammation. CeO2NPs exhibited a remarkable ability to switch between+3 and+4 oxidation states making this an efficient therapeutic option and an effective drug delivery agent. Further Reactive oxygen and nitrogen species. The overall goal of this study is to provide reasonable insight into CeO2NPs as new therapeutic agents and to solve the challenges, of safely and effectively employing these CeO2NPs for efficient management of Central Nervous System diseases

    Some formal results for the valence bond basis

    Full text link
    In a system with an even number of SU(2) spins, there is an overcomplete set of states--consisting of all possible pairings of the spins into valence bonds--that spans the S=0 Hilbert subspace. Operator expectation values in this basis are related to the properties of the closed loops that are formed by the overlap of valence bond states. We construct a generating function for spin correlation functions of arbitrary order and show that all nonvanishing contributions arise from configurations that are topologically irreducible. We derive explicit formulas for the correlation functions at second, fourth, and sixth order. We then extend the valence bond basis to include triplet bonds and discuss how to compute properties that are related to operators acting outside the singlet sector. These results are relevant to analytical calculations and to numerical valence bond simulations using quantum Monte Carlo, variational wavefunctions, or exact diagonalization.Comment: 22 pages, 14 figure

    Zero-temperature Kosterlitz-Thouless transition in a two-dimensional quantum system

    Full text link
    We construct a local interacting quantum dimer model on the square lattice, whose zero-temperature phase diagram is characterized by a line of critical points separating two ordered phases of the valence bond crystal type. On one side, the line of critical points terminates in a quantum transition inherited from a Kosterlitz-Thouless transition in an associated classical model. We also discuss the effect of a longer-range dimer interactions that can be used to suppress the line of critical points by gradually shrinking it to a single point. Finally, we propose a way to generalize the quantum Hamiltonian to a dilute dimer model in presence of monomers and we qualitatively discuss the phase diagram.Comment: (30 pages, 11 figures), v2 with minor correction

    GBS-based SNP map pinpoints the QTL associated with sorghum downy mildew resistance in maize (Zea mays L.)

    Get PDF
    Sorghum downy mildew (SDM), caused by the biotrophic fungi Peronosclerospora sorghi, threatens maize production worldwide, including India. To identify quantitative trait loci (QTL) associated with resistance to SDM, we used a recombinant inbred line (RIL) population derived from a cross between resistant inbred line UMI936 (w) and susceptible inbred line UMI79. The RIL population was phenotyped for SDM resistance in three environments [E1-field (Coimbatore), E2-greenhouse (Coimbatore), and E3-field (Mandya)] and also utilized to construct the genetic linkage map by genotyping by sequencing (GBS) approach. The map comprises 1516 SNP markers in 10 linkage groups (LGs) with a total length of 6924.7 cM and an average marker distance of 4.57 cM. The QTL analysis with the phenotype and marker data detected nine QTL on chromosome 1, 2, 3, 5, 6, and 7 across three environments. Of these, QTL namely qDMR1.2, qDMR3.1, qDMR5.1, and qDMR6.1 were notable due to their high phenotypic variance. qDMR3.1 from chromosome 3 was detected in more than one environment (E1 and E2), explaining the 10.3% and 13.1% phenotypic variance. Three QTL, qDMR1.2, qDMR5.1, and qDMR6.1 from chromosomes 1, 5, and 6 were identified in either E1 or E3, explaining 15.2%–18% phenotypic variance. Moreover, genome mining on three QTL (qDMR3.1, qDMR5.1, and qDMR6.1) reveals the putative candidate genes related to SDM resistance. The information generated in this study will be helpful for map-based cloning and marker-assisted selection in maize breeding programs

    Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Findings In 2019, 273 center dot 9 million (95% uncertainty interval 258 center dot 5 to 290 center dot 9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 center dot 72% (4 center dot 46 to 5 center dot 01). 228 center dot 2 million (213 center dot 6 to 244 center dot 7; 83 center dot 29% [82 center dot 15 to 84 center dot 42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global agestandardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 center dot 21% [-1 center dot 26 to -1 center dot 16]), similar progress was not observed for chewing tobacco (0 center dot 46% [0 center dot 13 to 0 center dot 79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 center dot 94% [-1 center dot 72 to -0 center dot 14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Summary Background Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings In 2019, 273 & middot;9 million (95% uncertainty interval 258 & middot;5 to 290 & middot;9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4 & middot;72% (4 & middot;46 to 5 & middot;01). 228 & middot;2 million (213 & middot;6 to 244 & middot;7; 83 & middot;29% [82 & middot;15 to 84 & middot;42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15-19 years was over 10% in seven locations in 2019. Although global age standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: -1 & middot;21% [-1 & middot;26 to -1 & middot;16]), similar progress was not observed for chewing tobacco (0 & middot;46% [0 & middot;13 to 0 & middot;79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (-0 & middot;94% [-1 & middot;72 to -0 & middot;14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Copyright (c) 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Background Ending the global tobacco epidemic is a defining challenge in global health. Timely and comprehensive estimates of the prevalence of smoking tobacco use and attributable disease burden are needed to guide tobacco control efforts nationally and globally. Methods We estimated the prevalence of smoking tobacco use and attributable disease burden for 204 countries and territories, by age and sex, from 1990 to 2019 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We modelled multiple smoking-related indicators from 3625 nationally representative surveys. We completed systematic reviews and did Bayesian meta-regressions for 36 causally linked health outcomes to estimate non-linear dose-response risk curves for current and former smokers. We used a direct estimation approach to estimate attributable burden, providing more comprehensive estimates of the health effects of smoking than previously available. Findings Globally in 2019, 1.14 billion (95% uncertainty interval 1.13-1.16) individuals were current smokers, who consumed 7.41 trillion (7.11-7.74) cigarette-equivalents of tobacco in 2019. Although prevalence of smoking had decreased significantly since 1990 among both males (27.5% [26. 5-28.5] reduction) and females (37.7% [35.4-39.9] reduction) aged 15 years and older, population growth has led to a significant increase in the total number of smokers from 0.99 billion (0.98-1.00) in 1990. Globally in 2019, smoking tobacco use accounted for 7.69 million (7.16-8.20) deaths and 200 million (185-214) disability-adjusted life-years, and was the leading risk factor for death among males (20.2% [19.3-21.1] of male deaths). 6.68 million [86.9%] of 7.69 million deaths attributable to smoking tobacco use were among current smokers. Interpretation In the absence of intervention, the annual toll of 7.69 million deaths and 200 million disability-adjusted life-years attributable to smoking will increase over the coming decades. Substantial progress in reducing the prevalence of smoking tobacco use has been observed in countries from all regions and at all stages of development, but a large implementation gap remains for tobacco control. Countries have a dear and urgent opportunity to pass strong, evidence-based policies to accelerate reductions in the prevalence of smoking and reap massive health benefits for their citizens. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Two doses of SARS-CoV-2 vaccination induce robust immune responses to emerging SARS-CoV-2 variants of concern

    Get PDF
    The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants
    • 

    corecore