107 research outputs found

    Effect of genital herpes on cervicovaginal HIV shedding in women co-infected with HIV AND HSV-2 in Tanzania.

    Get PDF
    To compare the presence and quantity of cervicovaginal HIV among HIV seropositive women with clinical herpes, subclinical HSV-2 infection and without HSV-2 infection respectively; to evaluate the association between cervicovaginal HIV and HSV shedding; and identify factors associated with quantity of cervicovaginal HIV. Four groups of HIV seropositive adult female barworkers were identified and examined at three-monthly intervals between October 2000 and March 2003 in Mbeya, Tanzania: (1) 57 women at 70 clinic visits with clinical genital herpes; (2) 39 of the same women at 46 clinic visits when asymptomatic; (3) 55 HSV-2 seropositive women at 60 clinic visits who were never observed with herpetic lesions; (4) 18 HSV-2 seronegative women at 45 clinic visits. Associations of genital HIV shedding with HIV plasma viral load (PVL), herpetic lesions, HSV shedding and other factors were examined. Prevalence of detectable genital HIV RNA varied from 73% in HSV-2 seronegative women to 94% in women with herpetic lesions (geometric means 1634 vs 3339 copies/ml, p = 0.03). In paired specimens from HSV-2 positive women, genital HIV viral shedding was similar during symptomatic and asymptomatic visits. On multivariate regression, genital HIV RNA (log10 copies/mL) was closely associated with HIV PVL (β = 0.51 per log10 copies/ml increase, 95%CI:0.41-0.60, p<0.001) and HSV shedding (β = 0.24 per log10 copies/ml increase, 95% CI:0.16-0.32, p<0.001) but not the presence of herpetic lesions (β = -0.10, 95%CI:-0.28-0.08, p = 0.27). HIV PVL and HSV shedding were more important determinants of genital HIV than the presence of herpetic lesions. These data support a role of HSV-2 infection in enhancing HIV transmissibility

    Runs of homozygosity in killer whale genomes provide a global record of demographic histories

    Get PDF
    Runs of homozygosity (ROH) occur when offspring inherit haplotypes that are identical by descent from each parent. Length distributions of ROH are informative about population history; specifically, the probability of inbreeding mediated by mating system and/or population demography. Here, we investigated whether variation in killer whale (Orcinus orca) demographic history is reflected in genome-wide heterozygosity and ROH length distributions, using a global data set of 26 genomes representative of geographic and ecotypic variation in this species, and two F1 admixed individuals with Pacific-Atlantic parentage. We first reconstructed demographic history for each population as changes in effective population size through time using the pairwise sequential Markovian coalescent (PSMC) method. We found a subset of populations declined in effective population size during the Late Pleistocene, while others had more stable demography. Genomes inferred to have undergone ancestral declines in effective population size, were autozygous at hundreds of short ROH (\u3c1 \u3eMb), reflecting high background relatedness due to coalescence of haplotypes deep within the pedigree. In contrast, longer and therefore younger ROH (\u3e1.5 Mb) were found in low latitude populations, and populations of known conservation concern. These include a Scottish killer whale, for which 37.8% of the autosomes were comprised of ROH \u3e1.5 Mb in length. The fate of this population, in which only two adult males have been sighted in the past five years, and zero fecundity over the last two decades, may be inextricably linked to its demographic history and consequential inbreeding depression

    IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses.

    Get PDF
    Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies

    CD8+ T Cells and IFN-γ Mediate the Time-Dependent Accumulation of Infected Red Blood Cells in Deep Organs during Experimental Cerebral Malaria

    Get PDF
    Background: Infection with Plasmodium berghei ANKA (PbA) in susceptible mice induces a syndrome called experimental cerebral malaria (ECM) with severe pathologies occurring in various mouse organs. Immune mediators such as T cells or cytokines have been implicated in the pathogenesis of ECM. Red blood cells infected with PbA parasites have been shown to accumulate in the brain and other tissues during infection. This accumulation is thought to be involved in PbA–induced pathologies, which mechanisms are poorly understood. Methods and Findings: Using transgenic PbA parasites expressing the luciferase protein, we have assessed by real-time in vivo imaging the dynamic and temporal contribution of different immune factors in infected red blood cell (IRBC) accumulation and distribution in different organs during PbA infection. Using deficient mice or depleting antibodies, we observed that CD8 + T cells and IFN-c drive the rapid increase in total parasite biomass and accumulation of IRBC in the brain and in different organs 6–12 days post-infection, at a time when mice develop ECM. Other cells types like CD4 + T cells, monocytes or neutrophils or cytokines such as IL-12 and TNF-a did not influence the early increase of total parasite biomass and IRBC accumulation in different organs. Conclusions: CD8 + T cells and IFN-c are the major immune mediators controlling the time-dependent accumulation of P. berghei-infected red blood cells in tissues

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Get PDF
    International audienceForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (aGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. aGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. all plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities

    The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia.

    Get PDF
    RATIONALE: The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES: This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS: The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS: The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION: This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.This work was supported by the Innovative Medicine Initiative Joint Undertaking under grant agreement no. 115008 of which resources are composed of EFPIA in-kind contribution and financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013). The authors thank Charlotte Oomen for valuable comments on the manuscript.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00213-015-4007-

    CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses

    Get PDF
    It is well established that Ly6C(hi) monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6C(hi) monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6C(hi) monocytes consist of two distinct subpopulations (CXCR4(hi) and CXCR4(lo) subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4(hi) subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4(lo) monocytes. We propose that the CXCR4(hi) subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues
    corecore