300 research outputs found
Statistics of extinction and survival in Lotka-Volterra systems
We analyze purely competitive many-species Lotka-Volterra systems with random
interaction matrices, focusing the attention on statistical properties of their
asymptotic states. Generic features of the evolution are outlined from a
semiquantitative analysis of the phase-space structure, and extensive numerical
simulations are performed to study the statistics of the extinctions. We find
that the number of surviving species depends strongly on the statistical
properties of the interaction matrix, and that the probability of survival is
weakly correlated to specific initial conditions.Comment: Previous version had error in authors. 11 pages, including 5 figure
The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus
Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to
osmotic stresses. In order to survive an increase in osmolarity, bacteria immediately take up
potassium and small organic compounds, also referred to as compatible solutes. The second
messenger c-di-AMP binds to several receptor proteins, most of which are involved in ion and
potassium uptake, that help bacteria cope with osmotic stress. In this study, we identified
OpuCA, the ATPase component of an uptake system for the compatible solute carnitine, as a cdi-AMP
target protein in S. aureus and found that a strain overproducing c-di-AMP showed
reduced carnitine uptake. The CBS domains of OpuCA bound to c-di-AMP, and a crystal
structure revealed a putative binding pocket for c-di-AMP in the cleft between the two CBS
domains. Thus, c-di-AMP is involved in regulating both branches of osmoprotection (potassium
uptake and compatible solute uptake), suggesting that c-di-AMP is a general osmotic stress
regulato
CARINA TCO2 data in the Atlantic Ocean
Water column data of carbon and carbon-relevant hydrographic and hydrochemical parameters from 188 cruises in the Arctic Mediterranean Seas, Atlantic and Southern Ocean have been retrieved and merged in a new data base: the CARINA (CARbon IN the Atlantic) Project. These data have gone through rigorous quality control (QC) procedures so as to improve the quality and consistency of the data as much as possible. Secondary quality control, which involved objective study of data in order to quantify systematic differences in the reported values, was performed for the pertinent parameters in the CARINA data base. Systematic biases in the data have been tentatively corrected in the data products. The products are three merged data files with measured, adjusted and interpolated data of all cruises for each of the three CARINA regions (Arctic Mediterranean Seas, Atlantic and Southern Ocean). Ninety-eight cruises were conducted in the "Atlantic" defined as the region south of the Greenland-Iceland-Scotland Ridge and north of about 30° S. Here we report the details of the secondary QC which was done on the total dissolved inorganic carbon (TCO2) data and the adjustments that were applied to yield the final data product in the Atlantic. Procedures of quality control – including crossover analysis between stations and inversion analysis of all crossover data – are briefly described. Adjustments were applied to TCO2 measurements for 17 of the cruises in the Atlantic Ocean region. With these adjustments, the CARINA data base is consistent both internally as well as with GLODAP data, an oceanographic data set based on the WOCE Hydrographic Program in the 1990s, and is now suitable for accurate assessments of, for example, regional oceanic carbon inventories, uptake rates and model validation
Self-organized criticality in deterministic systems with disorder
Using the Bak-Sneppen model of biological evolution as our paradigm, we
investigate in which cases noise can be substituted with a deterministic signal
without destroying Self-Organized Criticality (SOC). If the deterministic
signal is chaotic the universality class is preserved; some non-universal
features, such as the threshold, depend on the time correlation of the signal.
We also show that, if the signal introduced is periodic, SOC is preserved but
in a different universality class, as long as the spectrum of frequencies is
broad enough.Comment: RevTex, 8 pages, 8 figure
Dark energy, non-minimal couplings and the origin of cosmic magnetic fields
In this work we consider the most general electromagnetic theory in curved
space-time leading to linear second order differential equations, including
non-minimal couplings to the space-time curvature. We assume the presence of a
temporal electromagnetic background whose energy density plays the role of dark
energy, as has been recently suggested. Imposing the consistency of the theory
in the weak-field limit, we show that it reduces to standard electromagnetism
in the presence of an effective electromagnetic current which is generated by
the momentum density of the matter/energy distribution, even for neutral
sources. This implies that in the presence of dark energy, the motion of
large-scale structures generates magnetic fields. Estimates of the present
amplitude of the generated seed fields for typical spiral galaxies could reach
G without any amplification. In the case of compact rotating objects,
the theory predicts their magnetic moments to be related to their angular
momenta in the way suggested by the so called Schuster-Blackett conjecture.Comment: 5 pages, no figure
Life after charge noise: recent results with transmon qubits
We review the main theoretical and experimental results for the transmon, a
superconducting charge qubit derived from the Cooper pair box. The increased
ratio of the Josephson to charging energy results in an exponential suppression
of the transmon's sensitivity to 1/f charge noise. This has been observed
experimentally and yields homogeneous broadening, negligible pure dephasing,
and long coherence times of up to 3 microseconds. Anharmonicity of the energy
spectrum is required for qubit operation, and has been proven to be sufficient
in transmon devices. Transmons have been implemented in a wide array of
experiments, demonstrating consistent and reproducible results in very good
agreement with theory.Comment: 6 pages, 4 figures. Review article, accepted for publication in
Quantum Inf. Pro
Regular and stochastic behavior of Parkinsonian pathological tremor signals
Regular and stochastic behavior in the time series of Parkinsonian
pathological tremor velocity is studied on the basis of the statistical theory
of discrete non-Markov stochastic processes and flicker-noise spectroscopy. We
have developed a new method of analyzing and diagnosing Parkinson's disease
(PD) by taking into consideration discreteness, fluctuations, long- and
short-range correlations, regular and stochastic behavior, Markov and
non-Markov effects and dynamic alternation of relaxation modes in the initial
time signals. The spectrum of the statistical non-Markovity parameter reflects
Markovity and non-Markovity in the initial time series of tremor. The
relaxation and kinetic parameters used in the method allow us to estimate the
relaxation scales of diverse scenarios of the time signals produced by the
patient in various dynamic states. The local time behavior of the initial time
correlation function and the first point of the non-Markovity parameter give
detailed information about the variation of pathological tremor in the local
regions of the time series. The obtained results can be used to find the most
effective method of reducing or suppressing pathological tremor in each
individual case of a PD patient. Generally, the method allows one to assess the
efficacy of the medical treatment for a group of PD patients.Comment: 39 pages, 10 figures, 1 table Physica A, in pres
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
- …
