747 research outputs found

    Experimental Modeling of Cosmological Inflation with Metamaterials

    Full text link
    Recently we demonstrated that mapping of monochromatic extraordinary light distribution in a hyperbolic metamaterial along some spatial direction may model the flow of time and create an experimental toy model of the big bang. Here we extend this model to emulate cosmological inflation. This idea is illustrated in experiments performed with two-dimensional plasmonic hyperbolic metamaterials. Spatial dispersion which is always present in hyperbolic metamaterials results in scale-dependent (fractal) structure of the inflationary "metamaterial spacetime". This feature of our model replicates hypothesized fractal structure of the real observable universe.Comment: 17 pages, 3 figures. This version is accepted for publication in Physics Letters

    Modeling of Time with Metamaterials

    Full text link
    Metamaterials have been already used to model various exotic "optical spaces". Here we demonstrate that mapping of monochromatic extraordinary light distribution in a hyperbolic metamaterial along some spatial direction may model the "flow of time". This idea is illustrated in experiments performed with plasmonic hyperbolic metamaterials. Appearance of the "statistical arrow of time" is examined in an experimental scenario which emulates a Big Bang-like event.Comment: 15 pages, 4 figures, this version is accepted for publication in JOSA

    Metamaterial model of tachyonic dark energy

    Full text link
    Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic) matter. Here we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2+1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.Comment: 10 pages, 2 figures. This version is accepted for publication in the special issue of Galaxies: Beyond Standard Gravity and Cosmolog
    • …
    corecore