343 research outputs found

    Female Mate Choice is Influenced by Male Sport Participation

    Get PDF
    Sexual selection theory argues that females invest more heavily in reproduction than males and thus tend to be choosier in terms of mate choice. Sport may provide a context within which females can gain information about male quality to inform this choice. Males may be able to display attractive traits such as athleticism, strength, and physique to females while participating in sport. We predicted that females would favor males that participated in team sports over individual sports and non-athletes because team sport athletes may be more likely to display qualities such as the ability to work well with others and role acceptance. We used a questionnaire, a photograph, and manipulated descriptions to gauge the effects of sport involvement, attractiveness, and status on 282 females’ willingness to participate in various types of relationships. Team sport athletes were perceived as being more desirable as potential mates than individual sport athletes and non-athletes. It is suggested that team sport athletes may have traits associated with good parenting such as cooperation, likeability, and role acceptance, and/or these athletes may be better able to assert dominance in a team setting. Results are discussed in terms of further implications and future research

    Maternal investment in relation to sex ratio and offspring number in a small mammal – a case for Trivers and Willard theory?

    Get PDF
    Optimal parental sex allocation depends on the balance between the costs of investing into sons vs. daughters and the benefits calculated as fitness returns. The outcome of this equation varies with the life history of the species, as well as the state of the individual and the quality of the environment.We studied maternal allocation and subsequent fecundity costs of bank voles, Myodes glareolus, by manipulating both the postnatal sex ratio (all-male/all-female litters) and the quality of rearing environment (through manipulation of litter size by −2/+2 pups) of their offspring in a laboratory setting.We found that mothers clearly biased their allocation to female rather than male offspring regardless of their own body condition. Male pups had a significantly lower growth rate than female pups, so that at weaning, males from enlarged litters were the smallest. Mothers produced more milk for female litters and also defended them more intensively than male offspring.The results agree with the predictions based on the bank vole life history: there will be selection for greater investment in daughters rather than sons, as a larger size seems to be more influencial for female reproductive success in this species. Our finding could be a general rule in highly polygynous, but weakly dimorphic small mammals where females are territorial.The results disagree with the narrow sense Trivers & Willard hypothesis, which states that in polygynous mammals that show higher variation in male than in female reproductive success, high-quality mothers are expected to invest more in sons than in daughters

    Conservation Genetics and Gut Microbial Communities’ Variability of the Critically Endangered European Mink Mustela Lutreola: Implications for Captive Breeding Programs

    Full text link
    peer reviewedAbstract Host’s fitness can be affected by its genotype and gut microbiota, defined as the microbes living in the host’s intestinal tract. This study explored how the genetic diversity of the host influences its bacterial communities in the context of captive breeding programs, for the critically endangered European mink (Mustela lutreola). As stated by the ecosystem on a leash model, loss of host genetic diversity may lead to changes in immunomodulation and will therefore induce modifications of the gut microbiota. We investigated variation in the gut bacteria through 16S rRNA metabarcoding, related to the genetic diversity of European mink held in captivity in two breeding centers representing separate breeding stocks originating from the western and eastern populations. The genetic diversity of the host was assessed through diversity analysis of the adaptive MHC class I and II genes as well as neutral microsatellite markers. Results indicate lower diversity in neutral and MHC class I genes for the western population, and the opposite for MHC class II. A lower MHC class II gene variability led to an increase in microbial phylogenetic diversity and in abundance depending on the presence of specific MHC-II motifs. Those results seem to be linked to management practices that differs between the two programs, especially the number of generations in captivity. Long term Ex situ conservation practices can thus modulate gut microbial communities, that might potentially have consequences on the survival of reintroduced animals. We suggest strategies to foster genetic diversity in captive breeding program to mitigate the effects of genetic drift on those small, isolated populations

    A Microbial Tale of Farming, Invasion and Conservation: On the Gut Bacteria of European and American Mink in Western Europe

    Full text link
    peer reviewedAbstract One of the threats that the critically endangered European mink (Mustela lutreola) faces throughout its relict range, including the occidental population, is the impact of the American mink (Mustela vison) invasion in its natural habitat. We aimed to explore the differences in microbiota and genetic diversity between European and American mink to test phylosymbiosis theory. We investigated the gut microbiota composition of European and American mink in a controlled environment (captive breeding compounds and fur farms respectively) to account for the impact of the environment on gut bacterial composition. We compared them to the gut microbiota of both mink species in the natural environment across multiple habitats. Our exploratory results showed differences between free-ranging and captive individuals, with more extreme changes in American mink compared to European mink. However, feral American mink from a long-established population exhibited gut bacterial composition closer to the free-ranging native species compared to more recently established feral populations. This result could be explained by dietary shifts in the area sampled based on prey availability through different landscape, but also to a lesser extent due to greater genetic differentiation. This exploratory work contributes to the scarce literature currently available on the dynamics between gut microbiota and mammal invasion

    Sexual Size Dimorphism and Body Condition in the Australasian Gannet

    Get PDF
    Funding: The research was financially supported by the Holsworth Wildlife Research Endowment. Acknowledgments We thank the Victorian Marine Science Consortium, Sea All Dolphin Swim, Parks Victoria, and the Point Danger Management Committee for logistical support. We are grateful for the assistance of the many field volunteers involved in the study.Peer reviewedPublisher PD

    Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size

    Get PDF
    Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade-offs between brain size and sexual traits. Instead, larger-brained males had higher expression of several primary and precopulatory sexual traits – they had longer genitalia, were more colourful and developed longer tails than smaller-brained males. Larger-brained males were also in better body condition when housed in single-sex groups. There was no difference in post-copulatory sexual traits between males from the large- and small-brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated

    Environmentally enriched male mink gain more copulations than stereotypic, barren-reared competitors

    Get PDF
    Wild carnivores in zoos, conservation breeding centres, and farms commonly live in relatively small, unstimulating enclosures. Under these captive conditions, in a range of species including giant pandas, black-footed ferrets, and European mink, male reproductive abilities are often poor. Such problems have long been hypothesized to be caused by these animals' housing conditions. We show for the first time that rearing under welfare-improving (i.e., highly valued and stress-reducing) environmental enrichments enhances male carnivores' copulatory performance: in mate choice competitions, enriched male American mink (Neovison vison) mated more often than non-enriched males. We screened for several potential mediators of this effect. First was physiological stress and its impact on reproductive physiology; second, stress-mediated changes in morphology and variables related to immunocompetence that could influence male attractiveness; and third, behavioural changes likely to affect social competence, particularly autistic-like excessive routine and repetition ('perseveration') as is reflected in the stereotypies common in captive animals. Consistent with physiological stress, excreted steroid metabolites revealed that non-enriched males had higher cortisol levels and lower androgen levels than enriched conspecifics. Their os penises (bacula) also tended to be less developed. Consistent with reduced attractiveness, non-enriched males were lighter, with comparatively small spleens and a trend to greater fluctuating asymmetry. Consistent with impaired social competence, non-enriched males performed more stereotypic behaviour (e. g., pacing) in their home cages. Of all these effects, the only significant predictor of copulation number was stereotypy (a trend suggesting that low bodyweights may also be influential): highly stereotypic males gained the fewest copulations. The neurophysiological changes underlying stereotypy thus handicap males sexually. We hypothesise that such males are abnormally perseverative when interacting with females. Investigating similar problems in other taxa would be worthwhile, since many vertebrates, wild and domestic, live in conditions that cause stereotypic behaviour and/or impair neurological development

    Lack of support for Rensch's rule in an intraspecific test using red flour beetle (Tribolium castaneum) populations

    Get PDF
    Rensch's rule proposes a universal allometric scaling phenomenon across species where sexual size dimorphism (SSD) has evolved: in taxa with male‐biased dimorphism, degree of SSD should increase with overall body size, and in taxa with female‐biased dimorphism, degree of SSD should decrease with increasing average body size. Rensch's rule appears to hold widely across taxa where SSD is male‐biased, but not consistently when SSD is female‐biased. Furthermore, studies addressing this question within species are rare, so it remains unclear whether this rule applies at the intraspecific level. We assess body size and SSD within Tribolium castaneum (Herbst), a species where females are larger than males, using 21 populations derived from separate locations across the world, and maintained in isolated laboratory culture for at least 20 years. Body size, and hence SSD patterns, are highly susceptible to variations in temperature, diet quality and other environmental factors. Crucially, here we nullify interference of such confounds as all populations were maintained under identical conditions (similar densities, standard diet and exposed to identical temperature, relative humidity and photoperiod). We measured thirty beetles of each sex for all populations, and found body size variation across populations, and (as expected) female‐biased SSD in all populations. We test whether Rensch's rule holds for our populations, but find isometry, i.e. no allometry for SSD. Our results thus show that Rensch's rule does not hold across populations within this species. Our intraspecific test matches previous interspecific studies showing that Rensch's rule fails in species with female‐biased SSD.The authors further thank NERC (Standard research grant to MJGG, BCE and OYM), Swiss National Science Foundation (postdoctoral fellowships and Ambizione grants to OYM), the University of East Anglia and ETH Zürich for support.Peer Reviewe

    Age-dependent relationships between multiple sexual pigments and condition in males and females

    Get PDF
    The reliability of sexual signaling may change across age classes due to shifts in resource allocation patterns. Two contrasting hypotheses exist regarding how the condition dependence of ornaments may shift with age, and both have received empirical support. On one hand, ornaments may more reliably reflect condition and quality in older individuals, because younger individuals of high quality invest in survival over signaling effort. On the other hand, the condition dependence of ornaments may decline with age, if older individuals in poor condition terminally invest in ornaments, or if resource constraints decline with age. Further, the expression and condition dependence of different ornaments may shift with age in unique ways, such that multifaceted sexual displays maintain reliable signaling across age classes. In yellow warblers (Setophaga petechia) of both sexes, we assessed how relationships between carotenoid-and phaeomelanin-based sexual pigmentation, prenesting body reserves, and condition at molt (reflected by growth bars and feather quality) vary across age classes. Melanin coverage correlated with condition at molt across age classes in males and showed high repeatability in both sexes. In contrast, carotenoid saturation increased longitudinally with age in males and correlated with condition at molt in different age classes in the 2 sexes. Specifically, carotenoid saturation correlated positively with condition at molt in younger, but not older males, whereas in females, the situation was reversed, with a positive correlation present only in older females. Results suggest that age-dependent signaling may promote maintenance of multifaceted sexual displays and that agedependent signaling dynamics depend on sex. © The Author 2013. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved

    Life history correlates of faecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    Get PDF
    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts
    corecore