6 research outputs found

    Major results from the first plasma campaign of the Wendelstein 7-X stellarator

    Get PDF
    After completing the main construction phase of Wendelstein 7-X (W7-X) and successfully commissioning the device, first plasma operation started at the end of 2015. Integral commissioning of plasma start-up and operation using electron cyclotron resonance heating (ECRH) and an extensive set of plasma diagnostics have been completed, allowing initial physics studies during the first operational campaign. Both in helium and hydrogen, plasma breakdown was easily achieved. Gaining experience with plasma vessel conditioning, discharge lengths could be extended gradually. Eventually, discharges lasted up to 6 s, reaching an injected energy of 4 MJ, which is twice the limit originally agreed for the limiter configuration employed during the first operational campaign. At power levels of 4 MW central electron densities reached 3  ×  1019 m−3, central electron temperatures reached values of 7 keV and ion temperatures reached just above 2 keV. Important physics studies during this first operational phase include a first assessment of power balance and energy confinement, ECRH power deposition experiments, 2nd harmonic O-mode ECRH using multi-pass absorption, and current drive experiments using electron cyclotron current drive. As in many plasma discharges the electron temperature exceeds the ion temperature significantly, these plasmas are governed by core electron root confinement showing a strong positive electric field in the plasma centre

    Search for supersymmetric partners of electrons and muons in proton–proton collisions at s=13TeV

    Get PDF
    A search for direct production of the supersymmetric (SUSY) partners of electrons or muons is presented in final states with two opposite-charge, same-flavour leptons (electrons and muons), no jets, and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb−1 of proton–proton collisions at s=13TeV, collected with the CMS detector at the LHC in 2016. The search uses the MT2 variable, which generalises the transverse mass for systems with two invisible objects and provides a discrimination against standard model backgrounds containing W bosons. The observed yields are consistent with the expectations from the standard model. The search is interpreted in the context of simplified SUSY models and probes slepton masses up to approximately 290, 400, and 450 GeV, assuming right-handed only, left-handed only, and both right- and left-handed sleptons (mass degenerate selectrons and smuons), and a massless lightest supersymmetric particle. Limits are also set on selectrons and smuons separately. These limits show an improvement on the existing limits of approximately 150 GeV.0info:eu-repo/semantics/publishe

    Search for resonant pair production of Higgs bosons decaying to bottom quark-antiquark pairs in proton-proton collisions at 13 TeV

    No full text
    A search for a narrow-width resonance decaying into two Higgs bosons, each decaying into a bottom quark-antiquark pair, is presented. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 35.9 fb1^{-1} at s=\sqrt{s}= 13 TeV recorded by the CMS detector at the LHC. No evidence for such a signal is observed. Upper limits are set on the product of the production cross section for the resonance and the branching fraction for the selected decay mode in the resonance mass range from 260 to 1200 GeV
    corecore