89 research outputs found

    Hippocampal subfield segmentation in temporal lobe epilepsy: Relation to outcomes.

    Get PDF
    OBJECTIVE: To investigate the clinical and surgical outcome correlates of preoperative hippocampal subfield volumes in patients with refractory temporal lobe epilepsy (TLE) using a new magnetic resonance imaging (MRI) multisequence segmentation technique. METHODS: We recruited 106 patients with TLE and hippocampal sclerosis (HS) who underwent conventional T1-weighted and T2 short TI inversion recovery MRI. An automated hippocampal segmentation algorithm was used to identify twelve subfields in each hippocampus. A total of 76 patients underwent amygdalohippocampectomy and postoperative seizure outcome assessment using the standardized ILAE classification. Semiquantitative hippocampal internal architecture (HIA) ratings were correlated with hippocampal subfield volumes. RESULTS: Patients with left TLE had smaller volumes of the contralateral presubiculum and hippocampus-amygdala transition area compared to those with right TLE. Patients with right TLE had reduced contralateral hippocampal tail volumes and improved outcomes. In all patients, there were no significant relationships between hippocampal subfield volumes and clinical variables such as duration and age at onset of epilepsy. There were no significant differences in any hippocampal subfield volumes between patients who were rendered seizure free and those with persistent postoperative seizure symptoms. Ipsilateral but not contralateral HIA ratings were significantly correlated with gross hippocampal and subfield volumes. CONCLUSIONS: Our results suggest that ipsilateral hippocampal subfield volumes are not related to the chronicity/severity of TLE. We did not find any hippocampal subfield volume or HIA rating differences in patients with optimal and unfavorable outcomes. In patients with TLE and HS, sophisticated analysis of hippocampal architecture on MRI may have limited value for prediction of postoperative outcome

    Hippocampal involvement in nonpathological déjà vu: Subfield vulnerability rather than temporal lobe epilepsy equivalent

    Get PDF
    Introduction Morphological correlates of nonpathological déjà vu (DV) have been identified recently within the human brain. Significantly reduced gray matter volume (GMV) within a set of cortical and subcortical regions reported in subjects experiencing DV seems to mirror the distribution of GMV reduction in mesial temporal lobe epilepsy (MTLE) patients but vary in terms of the hippocampus. Another condition associated with hippocampal GMV reduction and DV alike disturbance in memory processing is schizophrenia (SCH). Here, we tested the hypothesis that hippocampal involvement in nonpathological DV resembles more closely the pattern of GMV decrease observed in MTLE compared with that occurring in SCH. Methods Using automated segmentation of the MRI data we compared the medians of GMV within 12 specific hippocampal subfields in healthy individuals that do (DV+; N = 87) and do not report déjà vu experience (DV−; N = 26), and patients with MTLE (N = 47) and SCH (N = 29). By Pearson correlation, we then evaluated the similarity of MTLE and SCH groups to DV+ group with respect to spatial distribution of GMV deviation from DV− group. Results Significant GMV decrease was found in MTLE group in most of the subfields. There were just trends in the hippocampal GMV decrease found in DV+ or SCH groups. Concerning the spatial distribution of GMV decrease, we revealed statistically significant correlation for the left hippocampus for SCH vs DV+. Otherwise there was no statistically significant correlation. Conclusions Our findings reveal structural features of hippocampal involvement in nonpathological DV, MTLE, and SCH. Despite our expectations, the pattern of GMV reduction in the DV+ relative to the DV− group does not resemble the pattern observed in MTLE any more than that observed in SCH. The highly similar patterns of the three clinical groups rather suggest an increased vulnerability of certain hippocampal subfields; namely, Cornu Ammonis (CA)4, CA3, dentate gyrus granular cell layer (GC‐DG), hippocampal–amygdaloid transition area (HATA) and subiculum

    The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease

    Get PDF
    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies

    The structural plasticity of white matter networks following anterior temporal lobe resection

    Get PDF
    Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy patients before and a mean of 4.5 months after anterior temporal lobe resection. The whole-brain analysis technique tract-based spatial statistics was used to compare pre- and postoperative data in the left and right temporal lobe epilepsy groups separately. We observed widespread, significant, mean 7%, decreases in fractional anisotropy in white matter networks connected to the area of resection, following both left and right temporal lobe resections. However, we also observed a widespread, mean 8%, increase in fractional anisotropy after left anterior temporal lobe resection in the ipsilateral external capsule and posterior limb of the internal capsule, and corona radiata. These findings were confirmed on analysis of the native clusters and hand drawn regions of interest. Postoperative tractography seeded from this area suggests that this cluster is part of the ventro-medial language network. The mean pre- and postoperative fractional anisotropy and parallel diffusivity in this cluster were significantly correlated with postoperative verbal fluency and naming test scores. In addition, the percentage change in parallel diffusivity in this cluster was correlated with the percentage change in verbal fluency after anterior temporal lobe resection, such that the bigger the increase in parallel diffusivity, the smaller the fall in language proficiency after surgery. We suggest that the findings of increased fractional anisotropy in this ventro-medial language network represent structural reorganization in response to the anterior temporal lobe resection, which may damage the more susceptible dorso-lateral language pathway. These findings have important implications for our understanding of brain injury and rehabilitation, and may also prove useful in the prediction and minimization of postoperative language deficits

    In vivo MRI signatures of hippocampal subfield pathology in intractable epilepsy.

    Get PDF
    OBJECTIVES: Our aim is to assess the subfield-specific histopathological correlates of hippocampal volume and intensity changes (T1, T2) as well as diff!usion MRI markers in TLE, and investigate the efficacy of quantitative MRI measures in predicting histopathology in vivo. EXPERIMENTAL DESIGN: We correlated in vivo volumetry, T2 signal, quantitative T1 mapping, as well as diffusion MRI parameters with histological features of hippocampal sclerosis in a subfield-specific manner. We made use of on an advanced co-registration pipeline that provided a seamless integration of preoperative 3 T MRI with postoperative histopathological data, on which metrics of cell loss and gliosis were quantitatively assessed in CA1, CA2/3, and CA4/DG. PRINCIPAL OBSERVATIONS: MRI volumes across all subfields were positively correlated with neuronal density and size. Higher T2 intensity related to increased GFAP fraction in CA1, while quantitative T1 and diffusion MRI parameters showed negative correlations with neuronal density in CA4 and DG. Multiple linear regression analysis revealed that in vivo multiparametric MRI can predict neuronal loss in all the analyzed subfields with up to 90% accuracy. CONCLUSION: Our results, based on an accurate co-registration pipeline and a subfield-specific analysis of MRI and histology, demonstrate the potential of MRI volumetry, diffusion, and quantitative T1 as accurate in vivo biomarkers of hippocampal pathology

    Cross-Species Affective Neuroscience Decoding of the Primal Affective Experiences of Humans and Related Animals

    Get PDF
    BACKGROUND: The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. PRINCIPAL FINDINGS: The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest nested-hierarchies of BrainMind affective processing, with primal emotional functions being foundational for secondary-process learning and memory mechanisms, which interface with tertiary-process cognitive-thoughtful functions of the BrainMind

    Risk and benefit of resective epilepsy surgery in the first years of life

    No full text
    corecore