1,605 research outputs found

    Optical Monitoring of BL Lacertae Object S5 0716+714 with a Novel Multi-Peak Interference Filter

    Get PDF
    We at first introduce a novel photometric system, which consists of a Schmidt telescope, an objective prism, a CCD camera, and, especially, a multi-peak interference filter. The multi-peak interference filter enables light in multi passbands to pass through it simultaneously. The light in different passbands is differentially refracted by the objective prism and is focused on the CCD separately, so we have multi "images" for each object on the CCD frames. This system enables us to monitor blazars exactly simultaneously in multi wavebands on a single telescope, and to accurately trace the color change during the variation. We used this novel system to monitor the BL Lacertae object S5 0716+714 during 2006 January and February and achieved a very high temporal resolution. The object was very bright and very active during this period. Two strong flares were observed, with variation amplitudes of about 0.8 and 0.6 mags in the VV' band, respectively. Strong bluer-when-brighter correlations were found for both internight and intranight variations. No apparent time lag was observed between the VV'- and RR'-band variations, and the observed bluer-when-brighter chromatism may be mainly attributed to the larger variation amplitude at shorter wavelength. In addition to the bluer-when-brighter trend, the object also showed a bluer color when it was more active. The observed variability and its color behaviors are consistent with the shock-in-jet model.Comment: 30 pages, 22 figures, accepted by A

    Particle acceleration in thick parallel shocks with high compression ratio

    Full text link
    We report studies on first-order Fermi acceleration in parallel modified shock waves with a large scattering center compression ratio expected from turbulence transmission models. Using a Monte Carlo technique we have modeled particle acceleration in shocks with a velocity ranging from nonrelativistic to ultrarelativistic and a thickness extending from nearly steplike to very wide structures exceeding the particle diffusion length by orders of magnitude. The nonrelativistic diffusion approximation is found to be surprisingly accurate in predicting the spectral index of a thick shock with large compression ratio even in the cases involving relativistic shock speeds.Comment: 4 pages, 2 figures, accepted to A&

    Modelling the spectral evolution of classical double radio sources

    Full text link
    The spectral evolution of powerful double radio galaxies (FR II's) is thought to be determined by the acceleration of electrons at the termination shock of the jet, their transport through the bright head region into the lobes and the production of the radio emission by synchrotron radiation in the lobes. Models presented to date incorporate some of these processes in prescribing the electron distribution which enters the lobes. We have extended these models to include a description of electron acceleration at the relativistic termination shock and a selection of transport models for the head region. These are coupled to the evolution of the electron spectrum in the lobes under the influence of losses due to adiabatic expansion, by inverse Compton scattering on the cosmic background radiation and by synchrotron radiation. The evolutionary tracks predicted by this model are compared to observation using the power/source-size (P-D) diagram. We find that the simplest scenario, in which accelerated particles suffer adiabatic losses in the head region which become more severe as the source expands produces P-D-tracks which conflict with observation, because the power is predicted to decline too steeply with increasing size. Agreement with observation can be found by assuming that adiabatic losses are compensated during transport between the termination shock and the lobe by a re-acceleration process distributed throughout the head region.Comment: 14 pages, 6 figures, accepted for publication in Astronomy and Astrophysic

    Turbulence transmission in parallel modified shocks using ray tracing

    Full text link
    We apply a semi-classical approach of handling waves as quasiparticle gas in a slowly varying flow -- analogous to ray tracing -- to calculate the Alfven wave transmission parameters, the resulting cross-helicity of the waves and the scattering-centre compression ratio, for cases where the shock thickness is large enough for the turbulent waves in the plasma to see the transition of the background flow parameters as smooth and slowly varying. For nonrelativistic shocks the wave transmission produces similar effects on the downstream turbulence and the scattering-centre compression ratio as does the transmission through a step shock: the downstream Alfven waves propagate predominantly towards the shock in the local plasma frame and, thus, the scattering-centre compression ratio is larger than the gas compression ratio. For thick relativistic shocks, however, we find qualitative differences with respect to the step-shock case: for low-Alfvenic-Mach-number shocks the downstream waves propagate predominantly away from the shock, and the scattering-centre compression ratio is lower than that of the gas. Thus, when taken into account, the Alfven wave transmission can decrease the efficiency of the first-order Fermi acceleration in a thick relativistic shock.Comment: 6 pages, 5 figures, accepted to A&

    A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE

    Get PDF
    The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potentialprestellar cores in the Polaris cloud region.Comment: 5 pages, 2 figures, accepted by A&

    Far-infrared observations of a massive cluster forming in the Monoceros R2 filament hub

    Get PDF
    We present far-infrared observations of Monoceros R2 (a giant molecular cloud at approximately 830 pc distance, containing several sites of active star formation), as observed at 70 μm, 160 μm, 250 μm, 350 μm, and 500 μm by the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) instruments on the Herschel Space Observatory as part of the Herschel imaging survey of OB young stellar objects (HOBYS) Key programme. The Herschel data are complemented by SCUBA-2 data in the submillimetre range, and WISE and Spitzer data in the mid-infrared. In addition, C18O data from the IRAM 30-m Telescope are presented, and used for kinematic information. Sources were extracted from the maps with getsources, and from the fluxes measured, spectral energy distributions were constructed, allowing measurements of source mass and dust temperature. Of 177 Herschel sources robustly detected in the region (a detection with high signal-to-noise and low axis ratio at multiple wavelengths), including protostars and starless cores, 29 are found in a filamentary hub at the centre of the region (a little over 1% of the observed area). These objects are on average smaller, more massive, and more luminous than those in the surrounding regions (which together suggest that they are at a later stage of evolution), a result that cannot be explained entirely by selection effects. These results suggest a picture in which the hub may have begun star formation at a point significantly earlier than the outer regions, possibly forming as a result of feedback from earlier star formation. Furthermore, the hub may be sustaining its star formation by accreting material from the surrounding filaments

    Herschel Observations of a Potential Core Forming Clump: Perseus B1-E

    Get PDF
    We present continuum observations of the Perseus B1-E region from the Herschel Gould Belt Survey. These Herschel data reveal a loose grouping of substructures at 160 - 500 micron not seen in previous submillimetre observations. We measure temperature and column density from these data and select the nine densest and coolest substructures for follow-up spectral line observations with the Green Bank Telescope. We find that the B1-E clump has a mass of ~ 100 solar masses and appears to be gravitationally bound. Furthermore, of the nine substructures examined here, one substructure (B1-E2) appears to be itself bound. The substructures are typically less than a Jeans length from their nearest neighbour and thus, may interact on a timescale of ~ 1 Myr. We propose that B1-E may be forming a first generation of dense cores, which could provide important constraints on the initial conditions of prestellar core formation. Our results suggest that B1-E may be influenced by a strong, localized magnetic field, but further observations are still required.Comment: 14 pages, 8 figures, published in A&A: Minor calibration correctio

    The Herschel view of the on-going star formation in the Vela-C molecular cloud

    Get PDF
    As part of the Herschel guaranteed time key program 'HOBYS', we present the photometric survey of the star forming region Vela-C, one of the nearest sites of low-to-high-mass star formation in the Galactic plane. Vela-C has been observed with PACS and SPIRE in parallel mode between 70 um and 500 um over an area of about 3 square degrees. A photometric catalogue has been extracted from the detections in each band, using a threshold of 5 sigma over the local background. Out of this catalogue we have selected a robust sub-sample of 268 sources, of which 75% are cloud clumps and 25% are cores. Their Spectral Energy Distributions (SEDs) have been fitted with a modified black body function. We classify 48 sources as protostellar and 218 as starless. For two further sources, we do not provide a secure classification, but suggest they are Class 0 protostars. From SED fitting we have derived key physical parameters. Protostellar sources are in general warmer and more compact than starless sources. Both these evidences can be ascribed to the presence of an internal source(s) of moderate heating, which also causes a temperature gradient and hence a more peaked intensity distribution. Moreover, the reduced dimensions of protostellar sources may indicate that they will not fragment further. A virial analysis of the starless sources gives an upper limit of 90% for the sources gravitationally bound and therefore prestellar. We fit a power law N(logM) prop M^-1.1 to the linear portion of the mass distribution of prestellar sources. This is in between that typical of CO clumps and those of cores in nearby star-forming regions. We interpret this as a result of the inhomogeneity of our sample, which is composed of comparable fractions of clumps and cores.Comment: 9 pages, 7 figures, accepted by A&

    The Pipe Nebula as seen with Herschel: Formation of filamentary structures by large-scale compression ?

    Get PDF
    A growing body of evidence indicates that the formation of filaments in interstellar clouds is a key component of the star formation process. In this paper, we present new Herschel PACS and SPIRE observations of the B59 and Stem regions in the Pipe Nebula complex, revealing a rich, organized network of filaments. The asymmetric column density profiles observed for several filaments, along with the bow-like edge of B59, indicates that the Pipe Nebula is being compressed from its western side, most likely by the winds from the nearby Sco OB2 association. We suggest that this compressive flow has contributed to the formation of some of the observed filamentary structures. In B59, the only region of the entire Pipe complex showing star formation activity, the same compressive flow has likely enhanced the initial column density of the clump, allowing it to become globally gravitationally unstable. Although more speculative, we propose that gravity has also been responsible for shaping the converging filamentary pattern observed in B59. While the question of the relative impact of large-scale compression and gravity remains open in B59, large-scale compression appears to be a plausible mechanism for the initial formation of filamentary structures in the rest of the complexComment: 9 pages, 9 figures, accepted for publication in A&
    corecore