555 research outputs found

    Reflection and Ducting of Gravity Waves Inside the Sun

    Get PDF
    Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward-traveling wave energy flux from reaching the deep solar interior. If a highly reflecting magnetized layer is located some distance below the convection zone base, a duct or wave guide can be set up, wherein vertical propagation is restricted by successive reflections at the upper and lower boundaries. The presence of both upward- and downward-traveling disturbances inside the duct leads to the existence of a set of horizontally propagating modes that have significantly enhanced amplitudes. We point out that the helical structure of these waves makes them capable of generating an alpha-effect, and briefly consider the possibility that propagation in a shear of sufficient strength could lead to instability, the result of wave growth due to over-reflection.Comment: 23 pages, 5 figures. Accepted for publication in Solar Physic

    Impurities and orbital dependent superconductivity in Sr_2RuO_4

    Full text link
    There now exists a wealth of experimental evidence that Sr_2RuO_4 is an odd-parity superconductor. Experiments further indicate that among the bands stemming from the Ru {xy,xz,yz} orbitals, the portion of the Fermi surface arising from the xy orbitals exhibits a much larger gap than the portions of the Fermi surface arising from the {xz,yz} orbitals. In this paper the role of impurities on such an orbital dependent superconducting state is examined within the Born approximation. In contrast to expected results for a nodeless p-wave superconductor the unique nature of the superconducting state in Sr_2RuO_4 implies that a low concentration of impurities strongly influences the low temperature behavior.Comment: 5 pages 3 figure

    Two lectures on color superconductivity

    Full text link
    The first lecture provides an introduction to the physics of color superconductivity in cold dense quark matter. The main color superconducting phases are briefly described and their properties are listed. The second lecture covers recent developments in studies of color superconducting phases in neutral and beta-equilibrated matter. The properties of gapless color superconducting phases are discussed.Comment: 56 pages, 9 figures. Minor corrections and references added. Lectures delivered at the IARD 2004 conference, Saas Fee, Switzerland, June 12 - 19, 2004, and at the Helmholtz International Summer School and Workshop on Hot points in Astrophysics and Cosmology, JINR, Dubna, Russia, August 2 - 13, 200

    Ionization degree of the electron-hole plasma in semiconductor quantum wells

    Get PDF
    The degree of ionization of a nondegenerate two-dimensional electron-hole plasma is calculated using the modified law of mass action, which takes into account all bound and unbound states in a screened Coulomb potential. Application of the variable phase method to this potential allows us to treat scattering and bound states on the same footing. Inclusion of the scattering states leads to a strong deviation from the standard law of mass action. A qualitative difference between mid- and wide-gap semiconductors is demonstrated. For wide-gap semiconductors at room temperature, when the bare exciton binding energy is of the order of T, the equilibrium consists of an almost equal mixture of correlated electron-hole pairs and uncorrelated free carriers.Comment: 22 pages, 6 figure

    Monitoring of the operating parameters of the KATRIN Windowless Gaseous Tritium Source

    Get PDF
    The Karlsruhe Tritium Neutrino (KATRIN) experiment will measure the absolute mass scale of neutrinos with a sensitivity of \m_{\nu} = 200 meV/c2^2 by high-precision spectroscopy close to the tritium beta-decay endpoint at 18.6 keV. Its Windowless Gaseous Tritium Source (WGTS) is a beta-decay source of high intensity (101110^{11}/s) and stability, where high-purity molecular tritium at 30 K is circulated in a closed loop with a yearly throughput of 10 kg. To limit systematic effects the column density of the source has to be stabilised at the 0.1% level. This requires extensive sensor instrumentation and dedicated control and monitoring systems for parameters such as the beam tube temperature, injection pressure, gas composition and others. Here we give an overview of these systems including a dedicated Laser-Raman system as well as several beta-decay activity monitors. We also report on results of the WGTS demonstrator and other large-scale test experiments giving proof-of-principle that all parameters relevant to the systematics can be controlled and monitored on the 0.1% level or better. As a result of these works, the WGTS systematics can be controlled within stringent margins, enabling the KATRIN experiment to explore the neutrino mass scale with the design sensitivity.Comment: 32 pages, 13 figures. modification to title, typos correcte

    The Starburst-AGN connection: The role of stellar clusters in AGNs

    Full text link
    Nuclear stellar clusters are a common phenomenon in spirals and in starbursts galaxies, and they may be a natural consequence of the star formation processes in the central regions of galaxies. HST UV imaging of a few Seyfert 2 galaxies have resolved nuclear starbursts in Seyfert 2 revealing stellar clusters as the main building blocks of the extended emission. However, we do not know whether stellar clusters are always associated with all types of nuclear activity. We present NUV and optical images provided by HST to find out the role that stellar clusters play in different types of AGNs (Seyferts and LLAGNs). Also with these images, we study the circumnuclear dust morphology as a probe of the circumnuclear environment of AGNs. Here we present a summary of the the first results obtained for the sample of Seyferts and LLAGN galaxies.Comment: Contribution to the conference proceedings "Space Astronomy: The UV window to the Universe", El Escorial (Spain), May 28-June 1 2007, submitted to Ap&SS, invited ed. Gomes de Castro, A.I. Further explanations are in Mu\~noz Marin, et al (2007) and Gonzalez Delgado et al (2007); and the full collection of figures are at the ULR: http://www.iaa.es/~rosa/research/LLAGNs2007/LLAGNs-HSTIma1.html http://www.iaa.es/~manuel/publications/paper01.htm

    The Fueling and Evolution of AGN: Internal and External Triggers

    Full text link
    In this chapter, I review the fueling and evolution of active galactic nuclei (AGN) under the influence of internal and external triggers, namely intrinsic properties of host galaxies (morphological or Hubble type, color, presence of bars and other non-axisymmetric features, etc) and external factors such as environment and interactions. The most daunting challenge in fueling AGN is arguably the angular momentum problem as even matter located at a radius of a few hundred pc must lose more than 99.99 % of its specific angular momentum before it is fit for consumption by a BH. I review mass accretion rates, angular momentum requirements, the effectiveness of different fueling mechanisms, and the growth and mass density of black BHs at different epochs. I discuss connections between the nuclear and larger-scale properties of AGN, both locally and at intermediate redshifts, outlining some recent results from the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore