541 research outputs found

    Home range and habitat use by Kemp's Ridley turtles in West-Central Florida

    Get PDF
    The Kemp's ridley turtle (Lepidochelys kempii) is an endangered species whose recovery depends in part on the identification and protection of required habitats. We used radio and sonic telemetry on subadult Kemp's ridley turtles to investigate home-range size and habitat use in the coastal waters of west-central Florida from 1994 to 1996. We tracked 9 turtles during May-August up to 70 days after release and fou.ld they occupied 5-30 km2 foraging ranges. Compositional analyses indicated that turtles used rock outcroppings in their foraging ranges at a significantly higher proportion than expected. based on availability within the study area. Additionally. turtles used live bottom (e.g .• sessile invertebrates) and green macroalgae habitats significantly more than seagrass habitat. Similar studies are needed through'mt the Kemp's ridley turtles' range to investigate regional and stage-specific differences in habitat use. which can then be used to conserve important foraging areas

    Critical fluctuation conductivity in layered superconductors in strong electric field

    Full text link
    The paraconductivity, originating from critical superconducting order-parameter fluctuations in the vicinity of the critical temperature in a layered superconductor is calculated in the frame of the self-consistent Hartree approximation, for an arbitrarily strong electric field and zero magnetic field. The paraconductivity diverges less steep towards the critical temperature in the Hartree approximation than in the Gaussian one and it shows a distinctly enhanced variation with the electric field. Our results indicate that high electric fields can be effectively used to suppress order-parameter fluctuations in high-temperature superconductors.Comment: 11 pages, 2 figures, to be published in Phys. Rev.

    Stable and Metastable Structures of Cobalt on Cu(001): An ab initio Study

    Full text link
    We report results of density-functional theory calculations on the structural, magnetic, and electronic properties of (1x1)-structures of Co on Cu(001) for coverages up to two monolayers. In particular we discuss the tendency towards phase separation in Co islands and the possibility of segregation of Cu on top of the Co-film. A sandwich structure consisting of a bilayer Co-film covered by 1ML of Cu is found to be the lowest-energy configuration. We also discuss a bilayer c(2x2)-alloy which may form due to kinetic reasons, or be stabilized at strained surface regions. Furthermore, we study the influence of magnetism on the various structures and, e.g., find that Co adlayers induce a weak spin-density wave in the copper substrate.Comment: 11 pages including 4 figures. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Optical Detection of a Single Nuclear Spin

    Full text link
    We propose a method to optically detect the spin state of a 31-P nucleus embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the 31-P neutral-donor ground state can be resolved via a direct frequency discrimination measurement of the 31-P bound exciton photoluminescence using single photon detectors. The measurement time is expected to be shorter than the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field Hc\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter κ\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas κ\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    High-contrast imaging constraints on gas giant planet formation - The Herbig Ae/Be star opportunity

    Full text link
    Planet formation studies are often focused on solar-type stars, implicitly considering our Sun as reference point. This approach overlooks, however, that Herbig Ae/Be stars are in some sense much better targets to study planet formation processes empirically, with their disks generally being larger, brighter and simply easier to observe across a large wavelength range. In addition, massive gas giant planets have been found on wide orbits around early type stars, triggering the question if these objects did indeed form there and, if so, by what process. In the following I briefly review what we currently know about the occurrence rate of planets around intermediate mass stars, before discussing recent results from Herbig Ae/Be stars in the context of planet formation. The main emphasis is put on spatially resolved polarized light images of potentially planet forming disks and how these images - in combination with other data - can be used to empirically constrain (parts of) the planet formation process. Of particular interest are two objects, HD100546 and HD169142, where, in addition to intriguing morphological structures in the disks, direct observational evidence for (very) young planets has been reported. I conclude with an outlook, what further progress we can expect in the very near future with the next generation of high-contrast imagers at 8-m class telescopes and their synergies with ALMA.Comment: Accepted by Astrophysics and Space Science as invited short review in special issue about Herbig Ae/Be stars; 12 pages incl. 5 figures, 2 tables and reference

    Evidence of two-electron tunneling interference in Nb/InAs junctions

    Full text link
    The impact of junction transparency in driving phase-coherent charge transfer across diffusive semiconductor-superconductor junctions is demonstrated. We present conductivity data for a set of Nb-InAs junctions differing only in interface transparency. Our experimental findings are analyzed within the quasi-classical Green-function approach and unambiguously show the physical processes giving rise to the observed excess zero-bias conductivity.Comment: 10 pages (RevTex), 4 figures (PostScript), accepted for pubblication in Physical Review

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

    Get PDF
    We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables, final version to appear in Physical Review
    corecore