262 research outputs found

    A Strategy for Identifying the Grid Stars for the Space Interferometry Mission (SIM)

    Get PDF
    We present a strategy to identify several thousand stars that are astrometrically stable at the micro-arcsecond level for use in the SIM (Space Interferometry Mission) astrometric grid. The requirements on the grid stars make this a rather challenging task. Taking a variety of considerations into account we argue for K giants as the best type of stars for the grid, mainly because they can be located at much larger distances than any other type of star due to their intrinsic brightness. We show that it is possible to identify suitable candidate grid K giants from existing astrometric catalogs. However, double stars have to be eliminated from these candidate grid samples, since they generally produce much larger astrometric jitter than tolerable for the grid. The most efficient way to achieve this is probably by means of a radial velocity survey. To demonstrate the feasibility of this approach, we repeatedly measured the radial velocities for a pre-selected sample of 86 nearby Hipparcos K giants with precisions of 5-8 m/s. The distribution of the intrinsic radial velocity variations for the bona-fide single K giants shows a maximum around 20 m/s, which is small enough not to severely affect the identification of stellar companions around other K giants. We use the results of our observations as input parameters for Monte-Carlo simulations on the possible design of a radial velocity survey of all grid stars. Our favored scenario would result in a grid which consists to 68% of true single stars and to 32% of double or multiple stars with periods mostly larger than 200 years, but only 3.6% of all grid stars would display astrometric jitter larger than 1 microarcsecond. This contamination level is probably tolerable.Comment: LaTeX, 21 pages, 8 figures, accepted by PASP (February 2001 issue). Also available at http://beehive.ucsd.edu/ftp/pub/grid/kgiants.htm

    Resting-state alterations in behavioral variant frontotemporal dementia are related to the distribution of monoamine and GABA neurotransmitter systems

    Get PDF
    Aside to clinical changes, behavioral variant frontotemporal dementia (bvFTD) is characterized by progressive structural and functional alterations in frontal and temporal regions. We examined if there is a selective vulnerability of specific neurotransmitter systems in bvFTD by evaluating the link between disease-related functional alterations and the spatial distribution of specific neurotransmitter systems and their underlying gene expression levels.Maps of fractional amplitude of low frequency fluctuations (fALFF) were derived as a measure of local activity from resting-state functional magnetic resonance imaging for 52 bvFTD patients (mean age = 61.5 ± 10.0 years; 14 female) and 22 healthy controls (HC) (mean age = 63.6 ± 11.9 years; 13 female). We tested if alterations of fALFF in patients co-localize with the non-pathological distribution of specific neurotransmitter systems and their coding mRNA gene expression. Further, we evaluated if the strength of co-localization is associated with the observed clinical symptoms.Patients displayed significantly reduced fALFF in fronto-temporal and fronto-parietal regions. These alterations co-localized with the distribution of serotonin (5-HT1b, 5-HT2a), dopamine (D2), and γ-aminobutyric acid (GABAa) receptors, the norepinephrine transporter (NET), and their encoding mRNA gene expression. The strength of co-localization with D2 and NET was associated with cognitive symptoms and disease severity of bvFTD.Local brain functional activity reductions in bvFTD followed the distribution of specific neurotransmitter systems indicating a selective vulnerability. These findings provide novel insight into the disease mechanisms underlying functional alterations. Our data-driven method opens the road to generate new hypotheses for pharmacological interventions in neurodegenerative diseases even beyond bvFTD

    Pitfalls in the characterization of circulating and tissue-resident human γδ T cells

    Get PDF
    Dissection of the role and function of human γδ T cells and their heterogeneous subsets in cancer, inflammation, and auto-immune diseases is a growing and dynamic research field of increasing interest to the scientific community. Therefore, harmonization and standardization of techniques for the characterization of peripheral and tissue-resident γδ T cells is crucial to facilitate comparability between published and emerging research. The application of commercially available reagents to classify γδ T cells, in particular the combination of multiple Abs, is not always trouble-free, posing major demands on researchers entering this field. Occasionally, even entire γδ T cell subsets may remain undetected when certain Abs are combined in flow cytometric analysis with multicolor Ab panels, or might be lost during cell isolation procedures. Here, based on the recent literature and our own experience, we provide an overview of methods commonly employed for the phenotypic and functional characterization of human γδ T cells including advanced polychromatic flow cytometry, mass cytometry, immunohistochemistry, and magnetic cell isolation. We highlight potential pitfalls and discuss how to circumvent these obstacles

    A RAVE investigation on Galactic open clusters I. Radial velocities and metallicities

    Get PDF
    Context. Galactic open clusters (OCs) mainly belong to the young stellar population in the Milky Way disk, but are there groups and complexes of OCs that possibly define an additional level in hierarchical star formation? Current compilations are too incomplete to address this question, especially regarding radial velocities (RVs) and metallicities ([M/H]). Aims. Here we provide and discuss newly obtained RV and [M/H] data, which will enable us to reinvestigate potential groupings of open clusters and associations. Methods. We extracted additional RVs and [M/H] from the RAdial Velocity Experiment (RAVE) via a cross-match with the Catalogue of Stars in Open Cluster Areas (CSOCA). For the identified OCs in RAVE we derived (RV) over bar and ([M/H]) over bar from a cleaned working sample and compared the results with previous findings. Results. Although our RAVE sample does not show the same accuracy as the entire survey, we were able to derive reliable (RV) over bar for 110 Galactic open clusters. For 37 OCs we publish (RV) over bar for the first time. Moreover, we determined ([M/H]) over bar for 81 open clusters, extending the number of OCs with ([M/H]) over bar by 69

    Discovery of a parsec-scale bipolar nebula around MWC 349A

    Full text link
    We report the discovery of a bipolar nebula around the peculiar emission-line star MWC 349A using archival Spitzer Space Telescope 24 um data. The nebula extends over several arcminutes (up to 5 pc) and has the same orientation and geometry as the well-known subarcsecond-scale (~400 times smaller) bipolar radio nebula associated with this star. We discuss the physical relationship between MWC 349A and the nearby B0 III star MWC 349B and propose that both stars were members of a hierarchical triple system, which was ejected from the core of the Cyg OB2 association several Myr ago and recently was dissolved into a binary system (now MWC 349A) and a single unbound star (MWC 349B). Our proposal implies that MWC 349A is an evolved massive star (likely a luminous blue variable) in a binary system with a low-mass star. A possible origin of the bipolar nebula around MWC 349A is discussed.Comment: 9 pages, 6 figures, accepted for publication in A&

    A RAVE investigation on Galactic open clusters: II. Open cluster pairs, groups and complexes

    Get PDF
    © ESO, 2017. Context. It is generally agreed upon that stars form in open clusters (OCs) and stellar associations, but little is known about structures in the Galactic OC population; whether OCs and stellar associations are born isolated or if they prefer to form in groups, for example. Answering this question provides new insight into star and cluster formation, along with a better understanding of Galactic structures. Aims. In the past decade, studies of OC groupings have either been based solely on spatial criteria or have also included tangential velocities for identifications. In contrast to previous approaches, we assumed that real OC groupings occupy a well defined area in the sky and show similar velocity vectors. For the first time, we have used 6D phase-space information, including radial velocities from the RAdial Velocity Experiment (RAVE) and other catalogues, for the detection of OC groupings. We also checked the age spread of potential candidates to distinguish between genuine groupings and chance alignments. Methods. We explored the Catalogue of Open Cluster Data (COCD) and determined 6D phase-space information for 432 out of 650 listed OCs and compact associations. The group identification was performed using an adapted version of the Friends-of-Friends algorithm, as used in cosmology, with linking lengths of 100 pc and 10-20 km s-1. For the verification of the identified structures, we applied Monte Carlo simulations with randomised samples. Results. For the linking lengths 100 pc and 10 km s-1, we detected 19 groupings, including 14 pairs, 4 groups with 3-5 members, and 1 complex with 15 members. The Monte Carlo simulations revealed that, in particular, the complex is most likely genuine, whereas pairs are more likely chance alignments. A closer look at the age spread of the complex and the comparison between spatial distributions of young and old cluster populations suggested that OC groupings likely originated from a common molecular cloud

    A spectroscopic and proper motion search of Sloan Digital Sky Survey : red subdwarfs in binary systems

    Get PDF
    Red subdwarfs in binary systems are crucial for both model calibration and spectral classification. We search for red subdwarfs in binary systems from a sample of high proper motion objects with Sloan Digital Sky Survey spectroscopy. We present here discoveries from this search, as well as highlight several additional objects of interest. We find 30 red subdwarfs in wide binary systems including: two with spectral type of esdM5.5, 6 companions to white dwarfs and 3 carbon-enhanced red subdwarfs with normal red subdwarf companions. 15 red subdwarfs in our sample are partially resolved close binary systems. With this binary sample, we estimate the low limit of the red subdwarf binary fraction of similar to 10 per cent. We find that the binary fraction goes down with decreasing masses and metallicities of red subdwarfs. A spectroscopic esdK7 subdwarf + white dwarf binary candidate is also reported. 30 new M subdwarfs have spectral type of >= M6 in our sample. We also derive relationships between spectral types and absolute magnitudes in the optical and near-infrared for M and L subdwarfs, and we present an M subdwarf sample with measured U, V, W space velocities.Peer reviewe

    Recognition Profile of Emotions in Natural and Virtual Faces

    Get PDF
    BACKGROUND: Computer-generated virtual faces become increasingly realistic including the simulation of emotional expressions. These faces can be used as well-controlled, realistic and dynamic stimuli in emotion research. However, the validity of virtual facial expressions in comparison to natural emotion displays still needs to be shown for the different emotions and different age groups. METHODOLOGY/PRINCIPAL FINDINGS: Thirty-two healthy volunteers between the age of 20 and 60 rated pictures of natural human faces and faces of virtual characters (avatars) with respect to the expressed emotions: happiness, sadness, anger, fear, disgust, and neutral. Results indicate that virtual emotions were recognized comparable to natural ones. Recognition differences in virtual and natural faces depended on specific emotions: whereas disgust was difficult to convey with the current avatar technology, virtual sadness and fear achieved better recognition results than natural faces. Furthermore, emotion recognition rates decreased for virtual but not natural faces in participants over the age of 40. This specific age effect suggests that media exposure has an influence on emotion recognition. CONCLUSIONS/SIGNIFICANCE: Virtual and natural facial displays of emotion may be equally effective. Improved technology (e.g. better modelling of the naso-labial area) may lead to even better results as compared to trained actors. Due to the ease with which virtual human faces can be animated and manipulated, validated artificial emotional expressions will be of major relevance in future research and therapeutic applications

    The Second-Agent Effect: Communicative Gestures Increase the Likelihood of Perceiving a Second Agent

    Get PDF
    Background: Beyond providing cues about an agent’s intention, communicative actions convey information about the presence of a second agent towards whom the action is directed (second-agent information). In two psychophysical studies we investigated whether the perceptual system makes use of this information to infer the presence of a second agent when dealing with impoverished and/or noisy sensory input. Methodology/Principal Findings: Participants observed point-light displays of two agents (A and B) performing separate actions. In the Communicative condition, agent B’s action was performed in response to a communicative gesture by agent A. In the Individual condition, agent A’s communicative action was replaced with a non-communicative action. Participants performed a simultaneous masking yes-no task, in which they were asked to detect the presence of agent B. In Experiment 1, we investigated whether criterion c was lowered in the Communicative condition compared to the Individual condition, thus reflecting a variation in perceptual expectations. In Experiment 2, we manipulated the congruence between A’s communicative gesture and B’s response, to ascertain whether the lowering of c in the Communicative condition reflected a truly perceptual effect. Results demonstrate that information extracted from communicative gestures influences the concurrent processing of biological motion by prompting perception of a second agent (second-agent effect). Conclusions/Significance: We propose that this finding is best explained within a Bayesian framework, which gives

    Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines : a case report

    Get PDF
    Abstract Background Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. Methods Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ+ T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and TH1 polarization. Results A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. Conclusions Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial
    corecore