81 research outputs found

    MMP-9 as a Candidate Marker of Response to BRAF Inhibitors in Melanoma Patients With BRAFV600E Mutation Detected in Circulating-Free DNA

    Get PDF
    The BRAFV600E mutation is associated with melanoma development and its detection in circulating-free DNA cannot be observed in all melanoma patients harboring this mutation in tumor specimens. Beside the circulating-free DNA BRAFV600E mutation, other markers of therapeutic response should be identified. Matrix metalloproteinase-9 (MMP-9) could be one of them as its role as indicator of invasiveness in melanoma have been explored. In this study, MMP-9 was evaluated in melanoma cells after treatment with dabrafenib. In vitro data were validated in 26 melanoma patients, of which 14 treated with BRAF inhibitor alone and 12 treated with both BRAF and MEK inhibitors, by ELISA assay and droplet digital PCR for measuring MMP-9 serum levels and circulating-free DNA BRAFV600E mutation, respectively. Statistical analyses were performed to evaluate the prognostic significance of MMP-9, progression-free survival (PFS) and overall survival (OS) according to the BRAFV600E mutation and MMP-9 levels. The performed analyses showed that MMP-9 and pEKR1-2 were statistically down-regulated in melanoma cells after treatment with dabrafenib. Circulating-free DNA BRAFV600E mutation was detected in 11 out of 26 melanoma patients showing higher levels of MMP-9 compared to those with undetectable BRAFV600E mutation. Furthermore, higher levels of MMP-9 and circulating-free DNA BRAFV600E mutation were associated with lower PFS and OS. Finally, the monitoring of therapy showed that MMP-9 significantly decreased at T1 and T2, but not at T-last, for the patients with detectable circulating-free DNA BRAFV600E mutation. In conclusion, high levels of MMP-9 and circulating-free DNA BRAFV600E mutation are associated with poor PFS and OS. MMP-9 may represent a promising indicator of response to BRAF inhibitors in combination with the detection of BRAFV600E mutation

    Environment and bladder cancer: molecular analysis by interaction networks

    Get PDF
    Bladder cancer (BC) is the 9th most common cancer worldwide, and the 6th most common cancer in men. Its development is linked to chronic inflammation, genetic susceptibility, smoking, occupational exposures and environmental pollutants. Aim of this work was to identify a sub-network of genes/proteins modulated by environmental or arsenic exposure in BC by computational network approaches. Our studies evidenced the presence of HUB nodes both in “BC and environment” and “BC and arsenicals” networks. These HUB nodes resulted to be correlated to circadian genes and targeted by some miRNAs already reported as involved in BC, thus suggesting how they play an important role in BC development due to environmental or arsenic exposure. Through data-mining analysis related to putative effect of the identified HUB nodes on survival we identified genes/proteins and their mutations on which it will be useful to focus further experimental studies related to the evaluation of their expression in biological matrices and to their utility as biomarkers of BC developmen

    Computational identification of microRNAs associated to both epithelial to mesenchymal transition and NGAL/MMP-9 pathways in bladder cancer

    Get PDF
    Bladder cancer is one of the leading cancer of the urinary tract. It is often diagnosed at advanced stage of the disease. To date, no specific and effective early detection biomarkers are available. Cancer development and progression are associated with the involvement of both epithelial-mesenchymal transition (EMT) and tumor microenvironment of which NGAL/MMP-9 complex represents the main player in bladder cancer. It is known that change in microRNAs (miRNAs) expression may result in gene modulation. Therefore, the identification of specific miRNAs associated with EMT pathway and NGAL/MMP-9 complex may be useful to detect the development of bladder cancer at early stages. On this ground, the expression levels of miRNAs in public available datasets of bladder cancer containing data of non-coding RNA profiling was evaluated. This analysis revealed a group of 16 miRNAs differentially expressed between bladder cancer patients and related healthy controls. By miRNA prediction tool (mirDIP), the relationship between the identified miRNAs and the EMT genes was established. Using the DIANA-mirPath (v.2) software, miRNAs, able to modulate the expression of NGAL and MMP-9 genes, were recognized. The results of this study provide evidence that the downregulated hsa-miR-145-5p and hsa-miR-214-3p may modulate the expression of both EMT and NGAL/MMP-9 pathways. Therefore, further validation analyses may confirm the usefulness of these selected miRNAs for predicting the development of bladder cancer at the early stage of the disease

    Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells

    Get PDF
    Pancreatic cancer is devastating cancer worldwide with few if any truly effective therapies. Pancreatic cancer has an increasing incidence and may become the second leading cause of death from cancer. Novel, more effective therapeutic approaches are needed as pancreatic cancer patients usually survive for less than a year after being diagnosed. Control of blood sugar levels by the prescription drug metformin in diseases such as diabetes mellitus has been examined in association with pancreatic cancer. While the clinical trials remain inconclusive, there is hope that certain diets and medications may affect positively the outcomes of patients with pancreatic and other cancers. Other natural compounds may share some of the effects of metformin. One "medicinal" fruit consumed by millions worldwide is berberine (BBR). Metformin and BBR both activate AMP-activated protein kinase (AMPK) which is a key mediator of glucose metabolism. Glucose metabolism has been shown to be very important in cancer and its significance is increasing. In the following studies, we have examined the effects of metformin, BBR and a panel of modified BBRs (NAX compounds) and chemotherapeutic drugs on the growth of four different human pancreatic adenocarcinoma cell lines (PDAC). Interestingly, the effects of metformin could be enhanced by BBR and certain modified BBRs. Upon restoration of WT-TP53 activity in MIA-PaCa-2 cells, an altered sensitivity to the combination of certain NAX compounds and metformin was observed compared to the parental cells which normally lack WT-TP53. Certain NAX compounds may interact with WT-TP53 and metformin treatment to alter the expression of key molecules involved in cell growth. These results suggest a therapeutic approach by combining certain pharmaceutical drugs and nutraceuticals to suppress the growth of cancer cells

    Computational Modeling of PI3K/AKT and MAPK Signaling Pathways in Melanoma Cancer

    Get PDF
    Background Malignant melanoma is an aggressive tumor of the skin and seems to be resistant to current therapeutic approaches. Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations able to activate the Ras/Raf/MEK/ERK (MAPK) and/or the PI3K/AKT (AKT) signalling pathways. Specifically, mutations of B-RAF activate MAPK pathway resulting in cell cycle progression and apoptosis prevention. According to these findings, MAPK and AKT pathways may represent promising therapeutic targets for an otherwise devastating disease. Result Here we show a computational model able to simulate the main biochemical and metabolic interactions in the PI3K/AKT and MAPK pathways potentially involved in melanoma development. Overall, this computational approach may accelerate the drug discovery process and encourages the identification of novel pathway activators with consequent development of novel antioncogenic compounds to overcome tumor cell resistance to conventional therapeutic agents. The source code of the various versions of the model are available as S1 Archive

    Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals

    Get PDF
    Mutations at the TP53 gene are readily detected (approximately 50-75%) in pancreatic ductal adenocarcinoma (PDAC) patients. TP53 was previously thought to be a difficult target as it is often mutated, deleted or inactivated on both chromosomes in certain cancers. In the following study, the effects of restoration of wild-type (WT) TP53 activity on the sensitivities of MIA-PaCa-2 pancreatic cancer cells to the MDM2 inhibitor nutlin-3a in combination with chemotherapy, targeted therapy, as well as, nutraceuticals were examined. Upon introduction of the WT-TP53 gene into MIA-PaCa-2 cells, which contain a TP53 gain of function (GOF) mutation, the sensitivity to the MDM2 inhibitor increased. However, effects of nutlin-3a were also observed in MIA-PaCa-2 cells lacking WT-TP53, as upon co-treatment with nutlin-3a, the sensitivity to certain inhibitors, chemotherapeutic drugs and nutraceuticals increased. Interestingly, co-treatment with nutlin-3a and certain chemotherapeutic drug such as irinotecan and oxaliplatin resulted in antagonistic effects in cells both lacking and containing WT-TP53 activity. These studies indicate the sensitizing abilities that WT-TP53 activity can have in PDAC cells which normally lack WT-TP53, as well as, the effects that the MDM2 inhibitor nutlin-3a can have in both cells containing and lacking WT-TP53 to various therapeutic agents

    Advances in Targeting Signal Transduction Pathways

    Get PDF
    Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies

    Emerging targeted therapies for melanoma treatment (Review)

    Get PDF
    Cutaneous melanoma is an aggressive cancer with a poor prognosis for patients with advanced disease. The identification of several key molecular pathways implicated in the pathogenesis of melanoma has led to the development of novel therapies for this devastating disease. In melanoma, both the Ras/Raf/MEK/ERK (MAPK) and the PI3K/AKT (AKT) signalling pathways are constitutively activated through multiple mechanisms. Targeting various effectors of these pathways with pharmacologic inhibitors may inhibit melanoma cell growth and angiogenesis. Ongoing clinical trials provide hope to improve progression-free survival of patients with advanced melanoma. This review summarizes the most relevant studies focused on the specific action of these new molecular targeted agents. Mechanisms of resistance to therapy are also discussed

    Clinical Features, Cardiovascular Risk Profile, and Therapeutic Trajectories of Patients with Type 2 Diabetes Candidate for Oral Semaglutide Therapy in the Italian Specialist Care

    Get PDF
    Introduction: This study aimed to address therapeutic inertia in the management of type 2 diabetes (T2D) by investigating the potential of early treatment with oral semaglutide. Methods: A cross-sectional survey was conducted between October 2021 and April 2022 among specialists treating individuals with T2D. A scientific committee designed a data collection form covering demographics, cardiovascular risk, glucose control metrics, ongoing therapies, and physician judgments on treatment appropriateness. Participants completed anonymous patient questionnaires reflecting routine clinical encounters. The preferred therapeutic regimen for each patient was also identified. Results: The analysis was conducted on 4449 patients initiating oral semaglutide. The population had a relatively short disease duration (42%  60% of patients, and more often than sitagliptin or empagliflozin. Conclusion: The study supports the potential of early implementation of oral semaglutide as a strategy to overcome therapeutic inertia and enhance T2D management

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research
    corecore