115 research outputs found

    Model-Based Robustness Testing in Event-B Using Mutation

    Get PDF
    International audienceRobustness testing aims at finding errors in a system under invalid conditions, such as unexpected inputs. We propose a robust-ness testing approach for Event-B based on specification mutation and model-based testing. We assume that a specification describes the valid inputs of a system. By applying negation rules, we mutate the precondition of events to explore invalid behaviour. Tests are generated from the mutated specification using ProB. ProB has been adapted to efficiently process mutated events. Mutated events are statically checked for satisfiability and enability using constraint satisfaction, to prune the transition search space. This has dramatically improve the performance of test generation. The approach is applied to the Java Card bytecode verifier. Large mutated specifications (containing 921 mutated events) can be easily tackled to ensure a good coverage of the robustness test space

    Quantification of Neural Network Uncertainties on the Hydrogeological Predictions by Probability Density Functions

    Get PDF
    International audienceThe risk of drought impacting the drinking water and agricultural production is worrying in the developed countries, especially in a changing climate context. To manage and prevent this phenomenon, real-time monitoring and predictive systems are emerging as the key solutions. In the field of artificial intelligence, neural networks are one of these predictive systems. This family of parameterized models is a composition of neuronal functions, which apply a non-linear transformation from their inputs to their outputs. These networks are able to learn a hydro(geo)logical system behaviour using a database composed of observed inputs (rainfall, evapotranspiration, etc.) and outputs (groundwater level, discharge, etc.), thanks to an algorithm minimizing a cost function between observed and simulated outputs. However, it remains difficult to assess the uncertainty generated by these models, possibly leading to misinterpretations by the end users. These uncertainties are mainly of three types. The first is related to the input data. Indeed, hydrosystems are surface elements whereas meteorological inputs are punctual elements. The interpolation error can, therefore, be significant because of the lack of knowledge between gauging stations. The second is the neural network model architecture itself. It is possible to deal with this source of uncertainty using regularization methods. Finally, the neural networks are submitted to uncertainties related to parameter initialization, before the training step. The initial parameters may have an important impact on the results. In this paper, we address the prediction of the Blavet groundwater level (Bretagne, France). In order to assess uncertainties, we will first focus on the parameters initialization of the model. Neuronal models are optimized using cross-validation and early stopping. Then, an ensemble model is realized, in which each member is the result of a unique set of parameters initialization. The purpose of the study is to define how many initializations are necessary to obtain a reasonable confidence interval for forecasts, with the smallest interval and the higher rate of observed points inside this interval. The best model will be determined using cross-validation scores thereby ensuring optimal robustness. We show that, in this case study, an ensemble model of 20 different initializations is sufficient to estimate uncertainty while preserving quality. In the second part, the resulting ensemble model will be used to estimate the global model uncertainty using probability density functions (pdf) applied to the distribution of groundwater level data and cross-validation scores of forecasts. It reveals that the groundwater level predictions are composed of two mixed distributions. Therefore, we will use the expectation-maximization algorithm (EM) to obtain parameters of mixed models. Mixed normal and mixed Gumbel laws, among five mixed distributions assessed, give the best groundwater distribution and are able to generate an abacus drawing uncertainty of mode

    Pennsylvanian-Early Triassic stratigraphy in the Alborz Mountains (Iran)

    Get PDF
    New fieldwork was carried out in the central and eastern Alborz, addressing the sedimentary succession from the Pennsylvanian to the Early Triassic. A regional synthesis is proposed, based on sedimentary analysis and a wide collection of new palaeontological data. The Moscovian Qezelqaleh Formation, deposited in a mixed coastal marine and alluvial setting, is present in a restricted area of the eastern Alborz, transgressing on the Lower Carboniferous Mobarak and Dozdehband formations. The late Gzhelian–early Sakmarian Dorud Group is instead distributed over most of the studied area, being absent only in a narrow belt to the SE. The Dorud Group is typically tripartite, with a terrigenous unit in the lower part (Toyeh Formation), a carbonate intermediate part (Emarat and Ghosnavi formations, the former particularly rich in fusulinids), and a terrigenous upper unit (Shah Zeid Formation), which however seems to be confined to the central Alborz. A major gap in sedimentation occurred before the deposition of the overlying Ruteh Limestone, a thick package of packstone–wackestone interpreted as a carbonate ramp of Middle Permian age (Wordian–Capitanian). The Ruteh Limestone is absent in the eastern part of the range, and everywhere ends with an emersion surface, that may be karstified or covered by a lateritic soil. The Late Permian transgression was directed southwards in the central Alborz, where marine facies (Nesen Formation) are more common. Time-equivalent alluvial fans with marsh intercalations and lateritic soils (Qeshlaq Formation) are present in the east. Towards the end of the Permian most of the Alborz emerged, the marine facies being restricted to a small area on the Caspian side of the central Alborz. There, the Permo-Triassic boundary interval is somewhat similar to the Abadeh–Shahreza belt in central Iran, and contains oolites, flat microbialites and domal stromatolites, forming the base of the Elikah Formation. The P–T boundary is established on the basis of conodonts, small foraminifera and stable isotope data. The development of the lower and middle part of the Elikah Formation, still Early Triassic in age, contains vermicular bioturbated mudstone/wackestone, and anachronostic-facies-like gastropod oolites and flat pebble conglomerates. Three major factors control the sedimentary evolution. The succession is in phase with global sea-level curve in the Moscovian and from the Middle Permian upwards. It is out of phase around the Carboniferous–Permian boundary, when the Dorud Group was deposited during a global lowstand of sealevel. When the global deglaciation started in the Sakmarian, sedimentation stopped in the Alborz and the area emerged. Therefore, there is a consistent geodynamic control. From the Middle Permian upwards, passive margin conditions control the sedimentary evolution of the basin, which had its depocentre(s) to the north. Climate also had a significant role, as the Alborz drifted quickly northwards with other central Iran blocks towards the Turan active margin. It passed from a southern latitude through the aridity belt in the Middle Permian, across the equatorial humid belt in the Late Permian and reached the northern arid tropical belt in the Triassic

    Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives

    Get PDF
    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred

    Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: two randomised clinical trials

    Get PDF
    Background Patients with chronic obstructive pulmonary disease (COPD) have few options for treatment. The efficacy and safety of the phosphodiesterase-4 inhibitor roflumilast have been investigated in studies of patients with moderate-to-severe COPD, but not in those concomitantly treated with longacting inhaled bronchodilators. The effect of roflumilast on lung function in patients with COPD that is moderate to severe who are already being treated with salmeterol or tiotropium was investigated. Methods In two double-blind, multicentre studies done in an outpatient setting, after a 4-week run-in, patients older than 40 years with moderate-to-severe COPD were randomly assigned to oral roflumilast 500 mu g or placebo once a day for 24 weeks, in addition to salmeterol (M2-127 study) or tiotropium (M2-128 study). The primary endpoint was change in prebronchodilator forced expiratory volume in 1s (FEV(1)). Analysis was by intention to treat. The studies are registered with ClinicalTrials.gov, number NCT00313209 for M2-127, and NCT00424268 for M2-128. Findings In the salmeterol plus roflumilast trial, 466 patients were assigned to and treated with roflumilast and 467 with placebo; in the tiotropium plus roflumilast trial, 371 patients were assigned to and treated with roflumilast and 372 with placebo. Compared with placebo, roflumilast consistently improved mean prebronchodilator FEV(1) by 49 mL (p<0.0001) in patients treated with salmeterol, and 80 mL (p<0.0001) in those treated with tiotropium. Similar improvement in postbronchodilator FEV(1) was noted in both groups. Furthermore, roflumilast had beneficial effects on other lung function measurements and on selected patient-reported outcomes in both groups. Nausea, diarrhoea, weight loss, and, to a lesser extent, headache were more frequent in patients in the roflumilast groups. These adverse events were associated with increased patient withdrawal. Interpretation Roflumilast improves lung function in patients with COPD treated with salmeterol or tiotropium, and could become an important treatment for these patients

    Relationship between the Clinical Frailty Scale and short-term mortality in patients ≥ 80 years old acutely admitted to the ICU: a prospective cohort study.

    Get PDF
    BACKGROUND: The Clinical Frailty Scale (CFS) is frequently used to measure frailty in critically ill adults. There is wide variation in the approach to analysing the relationship between the CFS score and mortality after admission to the ICU. This study aimed to evaluate the influence of modelling approach on the association between the CFS score and short-term mortality and quantify the prognostic value of frailty in this context. METHODS: We analysed data from two multicentre prospective cohort studies which enrolled intensive care unit patients ≥ 80 years old in 26 countries. The primary outcome was mortality within 30-days from admission to the ICU. Logistic regression models for both ICU and 30-day mortality included the CFS score as either a categorical, continuous or dichotomous variable and were adjusted for patient's age, sex, reason for admission to the ICU, and admission Sequential Organ Failure Assessment score. RESULTS: The median age in the sample of 7487 consecutive patients was 84 years (IQR 81-87). The highest fraction of new prognostic information from frailty in the context of 30-day mortality was observed when the CFS score was treated as either a categorical variable using all original levels of frailty or a nonlinear continuous variable and was equal to 9% using these modelling approaches (p < 0.001). The relationship between the CFS score and mortality was nonlinear (p < 0.01). CONCLUSION: Knowledge about a patient's frailty status adds a substantial amount of new prognostic information at the moment of admission to the ICU. Arbitrary simplification of the CFS score into fewer groups than originally intended leads to a loss of information and should be avoided. Trial registration NCT03134807 (VIP1), NCT03370692 (VIP2)

    Being Moved: Louis XIV’s Triumphant Tenderness and the Protestant Object

    Get PDF
    This essay examines the place of affect in Le Triomphe de la Religion, a text from 1687 that praises Louis XIV for the Revocation of the Edict of Nantes and the forced conversion of French Protestants. It explores the role of the material object in this text and contrasts it with seventeenth-century Protestant fears about the seductive power of Catholic objects. Drawing on the work of affect theory, it suggest how attention to the strange relation between emotion and the material object might better illuminate our sense of what it meant to be religiously different in absolutist France

    The impact of human expert visual inspection on the discovery of strong gravitational lenses

    Get PDF
    We investigate the ability of human ’expert’ classifiers to identify strong gravitational lens candidates in Dark Energy Survey like imaging. We recruited a total of 55 people that completed more than 25% of the project. During the classification task, we present to the participants 1489 images. The sample contains a variety of data including lens simulations, real lenses, non-lens examples, and unlabeled data. We find that experts are extremely good at finding bright, well-resolved Einstein rings, whilst arcs with g-band signal-to-noise less than ∼25 or Einstein radii less than ∼1.2 times the seeing are rarely recovered. Very few non-lenses are scored highly. There is substantial variation in the performance of individual classifiers, but they do not appear to depend on the classifier’s experience, confidence or academic position. These variations can be mitigated with a team of 6 or more independent classifiers. Our results give confidence that humans are a reliable pruning step for lens candidates, providing pure and quantifiably complete samples for follow-up studies
    corecore