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ABSTRACT
We investigate the ability of human ’expert’ classifiers to identify strong gravitational lens candidates in Dark Energy Survey
like imaging. We recruited a total of 55 people that completed more than 25% of the project. During the classification task, we
present to the participants 1489 images. The sample contains a variety of data including lens simulations, real lenses, non-lens
examples, and unlabeled data. We find that experts are extremely good at finding bright, well-resolved Einstein rings, whilst
arcs with g-band signal-to-noise less than ∼25 or Einstein radii less than ∼1.2 times the seeing are rarely recovered. Very few
non-lenses are scored highly. There is substantial variation in the performance of individual classifiers, but they do not appear
to depend on the classifier’s experience, confidence or academic position. These variations can be mitigated with a team of 6 or
more independent classifiers. Our results give confidence that humans are a reliable pruning step for lens candidates, providing
pure and quantifiably complete samples for follow-up studies.
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1 INTRODUCTION

The phenomenon of strong gravitational lensing has enormous power
as a tool to study a variety of cosmological questions. For example,
strong lenses enable a magnified view of the high redshift Universe
(Christensen et al. 2012; Stark et al. 2015; Shu et al. 2016; Ebeling
et al. 2018; Shu et al. 2022), a direct probe of dark matter in galaxies,
clusters and substructures (Oguri et al. 2002; Vegetti et al. 2010;
Jiménez-Vicente et al. 2015; Nierenberg et al. 2017; Gilman et al.
2020) and a geometrical probe of the cosmological parameters (Col-
lett & Auger 2014; Bonvin et al. 2017; Wong et al. 2020). Despite
the potential of this tool, almost all applications of strong lensing are
limited by sample size, but the era of deep wide area surveys offers an
opportunity to grow strong lens samples a hundredfold (Collett 2015)

⋆ karina.rojas@port.ac.uk
† thomas.collett@port.ac.uk

, and with that improve current studies and enable the exploration of
novel ideas as lens supernovae or compounds lenses.

As astronomy enters the era of billion object surveys, sophisti-
cated methods for discovering strong lenses have been developed
(e.g. Lanusse et al. 2018; Avestruz et al. 2019) and applied (Jacobs
et al. 2017, 2019b,a; Rojas et al. 2022; Savary et al. 2022; Petrillo
et al. 2017, 2019). These methods have been extremely successful at
identifying candidate lenses, but the rarity of lenses means that even
classifiers with 99.99% accuracy produce 100 false positives for ev-
ery true lens. The gold standard for confirming a lens is spectroscopic
confirmation of multiple redshifts, but reducing false positive rates
is needed for a spectroscopic confirmation campaign to be viable. In
most cases, a human expert step is used as the final stage filtering
step to remove false positives.

Expert human classification has been very successful at identify-
ing the best strong lens candidates. For example, Tran et al. (2022)
recently targeted 79 lens candidates, spectroscopically confirming 53
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and definitely ruling out only 4 1. However, introducing a human into
any classification task is likely to bring in selection biases: it is much
easier to identify a bright arc that is well resolved from the lensing
galaxy and significantly different in colour.
The primary purpose of this work is to calibrate and understand

how introducing human experts biases lens searches. In addition,
we aim to understand how the choice of "experts" impacts the lens
candidate sample selected and how search teams can mitigate the
biases of theirmembers.We set out to answer the following questions:

• What are the properties of lensing systems that human experts
identify reliably as lenses, and what do they miss?
• Do human experts confuse non-lenses for lenses?
• How does expert classification depend on the experience and

confidence of the experts?
• How reliable are individual classifications?
• When ranking lens candidates, what do the scores of teams of

experts mean?
• How should lens searchers best build an expert team to classify

their candidates?

In Section 2 we will lay out our experiment, data and expert
participants. In Section 3 we investigate how subsets of the lens
candidates are scored by the ensemble of our users, enabling us
to understand the selection biases of our experts. In Section 4 we
investigate how individual users perform on the classification task.
We summarize the conclusions of this work in Section 5.

2 THE EXPERIMENT

Our experiment is designed to understand human expert biases when
performing visual inspection of strong lens candidates. With experts
we refer to any person involved in strong lensing research, with
an academic status from masters student to Professor (or similar).
Additionally, we invited a small number of citizen scientists from
outside the academic strong lensing community. Several of these are
experienced users from the Spacewarps project. The details of our
invitation to be part of this experiment can be found in Appendix A.
We used the citizen science web portal Zoouniverse2 to serve a

sample of 1489 images for classification.
The users were asked to choose the best description for the object

displayed from four options: (1) Certain lens (> 90%), (2) Probable
lens (50 − 90%), (3) Probably not a lens (2 − 50%), and (4) Very
unlikely (< 1%). We included percentages of confidence to be a lens
to avoid semantic uncertainty 3.
We designed our experiment to closely mimic a real strong lens

classification task. In real lens searches, there are no tutorials, and
there is limited prior knowledge of the completeness and purity of
the sample to be classified. We therefore avoided offering further
guidelines about the composition of the data sets to be classified. For
the same reason, we did not offer a tutorial nor examples as would
be usual in a citizen science project.

1 20 of the remaining objects are likely strong lenses but redshifts weren’t
obtained for both lens and source in 20 of the systems. 2 systems yielded no
redshifts.
2 https://www.zooniverse.org/projects/krojas26/
experts-visual-inspection-experiment
3 Formally, these percentages cannot be probabilities sincewe did not provide
the users with prior information on the composition of the sample being
classified.

Default Blue Sqrt

Figure 1. Example of a DES cutout of 50 × 50 pixels 13′′ × 13′′ of an object
displayed in the three different scales presented to the users in the experiment.

2.1 The data

The image cutouts are from theDark Energy Survey (DES). DES uses
the Blanco 4-m telescope and the Dark Energy Camera (DECam,
Honscheid & DePoy 2008; Flaugher et al. 2015) located at Cerro
Tololo Inter-American Observatory (CTIO), Chile. The observations
are performed in the optical grizY bands. We used gri-bands to
produce colour composite 50 × 50 pixels (∼ 13′′ × 13′′) images
centering the object of interest in the middle. The images have a
typical 5σ depth of 23.72, 23.35, 22.88 in gri respectively.
We simultaneously display three different colour scalings of each

image to facilitate the recognition of the different features in the
stamp (see Fig. 1). The three imaging scalings are: Default, blue and
sqrt, and they are described in Appendix B.
Since we aimed to assess the classification skills of experts, we

required both a sufficiently large number of experts to participate
and sufficient classifications per expert. This creates tension for ex-
periment design since experts have difficulty engaging with the ex-
periment if the classification task is too large. We decided that a
sample size of around 1000 objects (around an hour of time assum-
ing 2 seconds per classification) was small enough to get significant
engagement and large enough to provide useful data.
Given the rarity of real lenses on the sky, a random sample of

∼1000 objects will not provide useful data. Instead, we designed a
sample to have a broad variety of data including: simulated lenses;
real lens candidates; non-lens examples; and unlabeled data. We also
duplicated 105 cutouts, 15 cutouts from seven out of nine data sets
excluding the eleven examples from SLACS and the four lenses from
Rojas et al. (2022). The idea is to investigate the level of consistency
of individuals when classifying. In total we had 1489 images to
classify.
Below we describe the different data sets, which are in 3 main

categories: lens simulations and lens candidates that are labelled
as lenses; negative examples that are labelled as non-lenses; and
unlabeled data. In Tab. 1 we present the name, number of objects and
category of each data set and in Fig. 2 we present as an example the
image of four objects of each labelled data set, more details about
these sets can be found in the following sections. Our sample is not
actively selected to include common false positives such as spiral,
irregular, interacting or ring galaxies, it also does not include lensing
by disk galaxies or groups of galaxies. This is due to the sample size
of 1500 objects

2.1.1 Lens simulations and additional lens examples.

We created two sets of simulations of strong lens systems. Each of
them contains 160 images and both have a uniform Einstein radius
distribution between 0.8′′ < θE < 3.0′′.
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Expert visual inspection of strong lenses 3

Table 1. Data sets presented in the experiment.

Data set name number of objects category

"Bright" simulations 150 Lens data set
Default simulations 150 Lens data set

SLACS 11 Lens data set
R22 lenses 4 Lens data set
LRGs 150 Non-lens data set
CNNs = 0 150 Non-lens data set

Non-lens simulations 150 Non-lens data set
CNN-best 300 Unlabeled data
Random 300 Unlabeled data

The simulations were created using Lenstronomy4 (Birrer &
Amara 2018; Birrer et al. 2021) and are based on real images for
the source and the lens. The full procedure is described in Rojas
et al. (2022) and can be summarized as follows: We pair Luminous
Red Galaxies (LRGs) from the DES and source galaxies from the
HST/HSC combined catalogue compiled by Cañameras et al. (2020),
here the galaxies have the HST/ACS F814W high-resolution (Leau-
thaud et al. 2007; Scoville et al. 2007; Koekemoer et al. 2007) and the
colour information fromHyper Suprime Cam (HSC) ultra-deep stack
images (Aihara et al. 2018). We modelled the mass of the systems
as a Singular Isothermal Ellipsoid (SIE), which has the following
parameters: the Einstein radius (θE), Position Angle, the axis ratio
and the central position. The Einstein radius was calculated using
the lens and source redshifts and the lens velocity dispersion. We
inferred the lens galaxy redshift and velocity dispersion using a K-
Nearest-Neighbors (KNN) algorithm, based on the assumption that
galaxies with similar gri magnitudes will also have similar redshifts
and velocity dispersion, this procedure is explained in detail in Rojas
et al. (2022). The rest of the parameters are derived by fitting an
elliptical Sérsic profile to the DES r-band image of the LRG. From
this mass model we calculate the deflection of light, and trace rays
back onto the source plane. The position of the source is randomly
selected within a squeare that encloses the caustic curves. This pro-
cess is done on an 0.03′′pixel grid and then downsampled and PSF
matched to the DES cutout of the LRG, and the flux scaled to the
DES zero point. This simulated arc is then added to the DES LRG
image to create a simulated lens.
The first data set is the "Bright simulations". This sample contains

a selection of simulations used to train the Convolutional Neural
Network (CNN) in Rojas et al. (2022), with the addition of smaller
Einstein radius simulations in the range 0.8′′ < θE < 1.2′′ that were
not used to train the neural network in that work. In this dataset,
the magnitude of the sources is boosted by one magnitude brighter
than the observed HSC sources. This gives a population of bright
lensing features designed for the CNN to easily learn the properties
of strong lenses. These simulations should be the easiest for experts
of identifying as strong lenses.
The second data is the "Default simulations". These were created

with the sameprocedure as inRojas et al. (2022), butwithout boosting
the magnitude of the source. In this set of simulations we expect the
systems to be harder to classify, since the signal-to-noise ratio (SNR)
will be lower and the sources will stand out less brightly relative to
the lensing galaxies.
Additionally to these two simulated sets of lenses we added the

eleven lenses from the Sloan Lens ACS Survey (SLACS, Auger

4 https://github.com/lenstronomy/lenstronomy
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Figure 2. Example of objects presented in the different labelled data
sets."Bright" simulations, Default simulations, SLACS and R22 lenses from
Rojas et al. (2022) are examples of objects labelled as lenses, while LRGs,
CNNs=0 and Non-lens simulations are examples of objects labelled as non-
lenses. The cutouts are 50 × 50 pixels and they are displayed in the default
scale.

et al. 2009) in the field of view of DES. These are spectroscopically
confirmed, smaller Einstein radius systems, that are clear in Hubble
Space Telescope imaging but represent a challenge to identify in
ground-based resolution. Since small Einstein radius systems are
expected to dominate in the real Universe (Collett 2015), we include
the SLACS sample to see if there is any chance to identify these
systems with visual inspection of ground-based telescopes. Finally,
four lens candidates from Rojas et al. (2022) categorized with high
scores in the "sure lens" list were also shown to the participant to see
if our classifiers agreed with the authors of Rojas et al. (2022), we
call this data set "R22 lenses".

2.1.2 Negative examples.

We included three data sets with 150 objects each that contained non-
lens examples. These samples test the classifiers’ ability to reject non-
lens systems. The first data set is a random sub-sample of the negative
examples presented in the training set used to train the CNN in Rojas
et al. (2022), we call this data set "Non-lenses training set" and
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contains LRGs that were not used to create strong lens simulations 5.
The second data set consisted of a random selection of objects that
were classified by the CNNwith scores near zero. We called this data
set "CNNs=0" and it contains stamps from the LRG selection that
are highly improbable to contain any lens feature according to the
CNN. The third data set is called "Non-lens simulations": we follow
the same procedure as for strong lens simulations, but we disable the
lensing deflections. Instead, we paint the source nearby to the LRG.
This is designed tomimic a ’source in front of LRG’ alignment, which
is the most potential false positive for lens classification. This sample
allows us to evaluate if classifiers are able to distinguish between real
compact lenses and unlensed blue galaxies close to LRGs.

2.1.3 Unlabeled data.

We additionally included two data sets of unlabeled data, each set
containing 300 objects. The first one contains the 300 best stamps
graded by the CNN in Rojas et al. (2022), where 6 of them were
flagged as "Maybe lens" in that work. The objective of this data
set is to re-do the visual inspection and compare the classifications
of the authors of Rojas et al. (2022) with the participants in our
experiment. We call this data set unlabeled as we do not have a
confirmed classification of the objects displayed, and although this
data set was previously inspected by another group we do not use this
information as prior. The second set was created by selecting random
objects with CNN scores distributed between 0.1 and 0.9 from the
sample analysed in Rojas et al. (2022). The objective of this is both
to see if CNN grades and expert grades are correlated and to see if
a population of high-quality candidates are likely to be missed by
CNNs.

2.2 Participants.

We asked all the participants to complete a google form requesting
some basic and confidential information that we used to have a more
deep analysis of this experiment. We asked three multiple choice
questions. These questions and their options are:

(i) How many years have you worked in the field of gravitational
lensing? a. Less than one year, b. Between 1-4 years, c. Between 4-8
years, d. Between 8-12 years, e. More than 12 years.
(ii) What is your research status? a. Master student, b. Ph.D. stu-

dent, c.Postdoc, d.Professor/lecturer/similar, e. Amateur enthusiast6.
(iii) How confident do you feel classifying lens systems? a.Very

confident, b. Confident, c. A bit confident, d. Not confident.

This informationwas asked so that we could search for correlations
in the performance of the classifiers.
A total of 80 people filled in the google form and a total of 69,592

classifications were made in the project. Some of the users con-
tributed only a small number of classifications and 15% of them
did not perform any classification - we discarded the classifications
of such users. We included all classifications made by users that
analyzed more than 25% of the sample (370 objects). This cutoff
leaves 55 classifiers, where 51% of them finished the whole project.
Then we have a total of 66,835 classifications, with an average of 45
classifications per object.
The breakdown of the participants into the categories of academic

5 it is not impossible that this sample contains a real lens, but it is statistically
unlikely
6 For better understanding we call this group "Citizen scientist" here.

Table 2. Number of participants split in the three different categories re-
quested at the beginning of this experiment.

Academic status N. of participants

Professors 16
Postdocs 13

Ph.D. Students 15
Master Students 3
Citizen Scientist 8

Years of experience in the field

More than 12 11
8-12 8
4-8 10
1-4 17

Less than a year 9

Confidence

Very confident 16
Confident 22

A bit confident 14
Not confident 3

position, years of experience, and confidence are listed in Table 2.
A point of interest from the information compiled at this point is
the correlation between confidence and experience. As is expected,
classifiers with more experience (either a higher academic status or
years working in the field) feel more confident performing the task
as we can see in Appendix C.

3 RESULTS A: THE DISCOVERY OF LENSES WITH
EXPERT VISUAL INSPECTION

In this section we look at the performance of the ensemble of classi-
fiers in identifying strong lenses.

3.1 Scoring objects

To compute a score for each object classified by our users,we translate
the four different options into numbers as follows: "Certain lens" = 1,
"Probable lens" = 2/3, "Probably not lens" = 1/3 and "Very unlikely" =
0. The score for each object is the mean value of all its classifications.
This gives every object a score between 0 and 1: objects scoring 1
are universally considered to be a strong lens and objects scoring 0
are universally considered non-lenses.
In Fig. 3 we present the mean score histograms split into the

various data subsets. Overall we find that the scores of non-lenses
are low and for many lenses the scores are high.
We investigated an alternative scoring system that up-weighted

users with higher classification skill (Marshall et al. 2015) but this
had no impact on our results (See Appendix D).

3.2 Scores for images known to contain lenses.

The left panel in Fig. 3 shows the distribution of scores for the four
data sets of objects labelled as lenses. Both simulated data sets have
scores spanning the full range. This is not unsurprising: some of the
simulations are bright arcs in textbook configurations whereas others
are extremely faint or are not easily resolved from the lensing galaxy.
It is not a surprise that the "Bright" simulation set contains a higher
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Figure 3. Mean score per object separated in each of the data sets presented in this work: lens examples (left panel), non-lens examples (middle panel), and
unlabeled data (right panel). All the histograms have the same binning with the expectation of SLACS and R22 lenses data sets where the bin size is double for
visualization purposes.

number of objects classified as lenses than in the "Default" one: the
brightest arcs stand out more from the lenses. In Fig. 4 we present the
8 cutouts with the best scores for each of the lens simulation samples
on the two top panels.

The simulated lenses also give us an insight into the selection
function of lens discovery with visual inspection. Since our sample
is relatively small, we can only gain a coarse understanding of the
selection function. In Fig. 5 and Fig. E1 we compare the recovery
fraction of simulated lenses and its standard deviation as a function
of signal-to-noise ratio in the g-band, the magnitude of the Arc in the
g-band and the Einstein radius of the lens. Since all of our images are
simulations of the approximately uniform depth Dark Energy Survey,
the first two quantities are tightly correlated. It is clear from the heat
maps of Fig. 5 that there is a fairly sharp cutoff in recovery fraction
for each quantity. Arcs fainter than ∼23rd magnitude (corresponding
to a total SNR less than about 25), or with Einstein radius less than
∼1.2 ′′are not discoverable by human eye in DES-like imaging. On
the other hand, from the standard deviation of the scores we do not
see any trend that allows us to get further information.

In the same way, when we analyzed the SLACS sample we found
that they were classified as "Non-lenses". The selection function
of these systems drives them to have very bright lens galaxies and
Einstein radii below 1.0 ′′ in most of the cases (Dobler et al. 2008).
Given the results on similar simulated lenses, it is therefore not
surprising that the human experts struggled to classify these systems
as lenses. This is almost certainly because of the challenge to visually
deblend the lens and source in DES imaging. The eleven SLACS
systems inDES are shown in Fig. 6, in the three different colour scales
along with the score that they obtained from the visual inspection.

On the other hand, the "R22 lenses" received scores between 0.6
and 1.0, i.e. the classifiers consider them to probably be lenses. These
R22 lenseswere discovered using a visual inspection of the sameDES
data, so it is not surprising that these lenses remain discoverable for
our classifiers. Although, as we can see in Fig. 7, the visual inspection
scores obtained in Rojas et al. (2022) are somewhat different to those
of our classifiers. We attribute this to human factors which we will
discuss further in Sect. 4.3.

3.3 Performance in negative examples.

Our Non-lens examples are divided in three different data sets, the
distribution of scores of their objects are shown in the middle panel
of Fig. 3. Here we see that most of them were classified with scores
between 0 and 0.3, meaning they are very unlikely to be lenses.
The "Non-lens simulations" (mimicking a chance non-lensing align-
ment) data set shows a broader distribution towards higher values
these objects were potentially false positives, but they clearly do not
particularly confuse our expert classifiers.
Even though most of the objects are correctly identified as non-

lenses, in Fig. 4 we present the eight cutouts of each sample with
higher scores. Here we can see that most of the objects in the
"LRGs" and "CNNs=0" data sets have little blue or red-ish com-
panions around the central galaxy that could be mistaken for signs of
lensing. In the same way, the cutouts of the "Non-lens simulations"
set can be easily mistaken by very compact (low Einstein radii) lens
systems, producing that some users gave a higher score to these ob-
jects. Strictly speaking, the LRG and "CNNs=0" sets could contain
a lens, though the probability of this is≪ 1%.

3.4 Performance in unlabeled data.

We have two unlabeled data sets, "CNN-best" and "Random". Intu-
itively we should hope that the CNN-selected sample should contain
more lens candidates than the random sample. All of the CNN-best
lenses have been inspected in Rojas et al. (2022). In the right panel
of Fig. 3 we see that the CNN-best objects are distributed between
0.0 and 0.8 (0.5 in the case of the Random sample), but the peak of
these distributions are around 0.2, with most of the objects classified
as Non-lenses and only a few of them have a score above 0.5.
In Fig. 8 we present the 16 cutouts with the highest scores for

each of the samples. In the "CNN-best" data set we find that five
of the objects were also recognized as candidates in Rojas et al.
(2022), all of them classified in their "Maybe lens" catalogue. There
are also seven objects with scores above 0.5 that were not classified
as potential candidates in Rojas et al. (2022). In the case of the
"Random" sample, none of the cutouts was classified as a potential
lens candidate, although some get close to a score of 0.5. We can see
some of them were highly graded by the CNN, this means that they
went through the visual inspection steps in Rojas et al. (2022) but
were not selected as lenses by those authors.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article/doi/10.1093/m
nras/stad1680/7191857 by guest on 14 June 2023



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

6 K. Rojas et al.

s = 1.0

"Bright"
simulations

"Bright"
simulations

"Bright"
simulations

"Bright"
simulations

"Bright"
simulations

"Bright"
simulations

"Bright"
simulations

"Bright"
simulations

s = 1.0 s = 1.0 s = 1.0 s = 0.99 s = 0.99 s = 0.98 s = 0.98

s = 1.0

Default
simulations

Default
simulations

Default
simulations

Default
simulations

Default
simulations

Default
simulations

Default
simulations

Default
simulations

s = 1.0 s = 0.99 s = 0.99 s = 0.98 s = 0.97 s = 0.97 s = 0.97

s = 0.2

LRGsLRGsLRGsLRGsLRGsLRGsLRGsLRGs

s = 0.19 s = 0.19 s = 0.19 s = 0.18 s = 0.17 s = 0.16 s = 0.16

s = 0.31

CNNs=0CNNs=0CNNs=0CNNs=0CNNs=0CNNs=0CNNs=0CNNs=0

s = 0.23 s = 0.18 s = 0.17 s = 0.17 s = 0.17 s = 0.16 s = 0.15

s = 0.31

Non-lens
simulations

Non-lens
simulations

Non-lens
simulations

Non-lens
simulations

Non-lens
simulations

Non-lens
simulations

Non-lens
simulations

Non-lens
simulations

s = 0.3 s = 0.3 s = 0.29 s = 0.28 s = 0.28 s = 0.27 s = 0.26

Figure 4. Examples of the eight objects with the highest mean score classified in the data sets: "Bright" simulations, Default simulations, LRGs, CNNs=0 and
non-lens simulations. The mean score is displayed at the bottom of each cutout.

3.5 Comparison between CNN and visual inspection scores.

We compare the classification scores given by the CNN trained in
Rojas et al. (2022) with our visual inspection scores. Fig. 9 shows
the scatter graph of aggregated expert scores against the CNN scores
of Rojas et al. (2022). These two scores are not strongly correlated,
indicating that the CNN and the experts are likely responding to
different features in the images.
Since none of the objects in the Random data received a hu-

man score of 0.5 or more, we see no evidence of the CNN missing
good candidates, however, this cannot be a definitive conclusion
given the small sample size and the lack of correlation between the
CNN and human scores. We cannot draw definitive conclusions from
the CNN’s strong performance on simulations, since the CNN was
trained on simulations constructed in the same way.
In the non-lens data sets we see that most of the scores are well

below 0.5, although a few non-lens simulations did manage to con-
fuse the CNN. In a similar way, the CNN fails to recognize a subset
of the lens simulations, often with a score even lower than given by
the humans. In both simulated data sets the CNN correctly classifies
around 1.6 times more images as lenses than humans, with the differ-
ence mostly coming from systems where the Einstein radii are below
1.2′′ (Fig. 10). Similarly, some of the SLACS lenses obtained high
scores by the CNN, despite being missed by the humans classifiers.
Jacobs et al. (2022) showed that, for CNN lens finders, parameters

like color, PSF, occlusion and source magnitude play a major role in
the CNN’s scoring. We clearly see in that the source magnitude of
plays a major role (see Fig 10, left panel), with sources fainter than

24.5 magnitude not being detected by either the CNN and humans:
fainter arcs are not detectable in DES-like imaging. We also see
that the CNN gives higher scores to simulations with blue features,
although it does reject other objects across the range of g−i space. As
such it appears that the CNN is correctly learning that most lensed
sources are blue, rather than incorrectly assuming that most blue
objects are lensed sources.
To understand cases where humans and the CNN gave contra-

dictory scores, we compare the Einstein radii and SNR in g-band
distributions for those systems (Fig. 10, right panel). Several objects
with high CNN scores but low visual inspection scores have small
Einstein radii and/or low SNR, suggesting that the completeness of
the CNN pushes further into this regime. A mosaic with examples of
the simulations with missmatched scores is presented in Fig. F1.

4 RESULTS B: UNDERSTANDING EXPERT
CLASSIFICATION

In this section, we investigate how individual users performed when
executing the classification task.

4.1 How accurately do individuals classify our sample?

In order to evaluate the classification performed by each user we
used the labeled data where we know the underlying truth: objects
are either Lens or Non-lens. In our labeled category we find 58%
of all the classifications (38,432 in total). Knowing the true label of
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Figure 5.Heat maps with the average mean score per bins for the objects in the simulated lenses data sets. The left panels correspond to the "Bright" simulations,
while the right panels to the "Default" simulations. In the top panels we display the logarithm of the SNR in g-band, while in the bottom panels we present the
magnitude of the arc in the g-band. The color bar was selected with the purpose to more easily identify the bins where the simulations can be recognized as lens
systems (in red) and where they are not identified (blue).

each object and the classification given by each user we can compute
confusion matrices to compare user performance when classifying
the objects.
Aggregating all of the classifiers and classifications, we computed

a confusion matrix displaying the four different classification op-
tions. In Fig. 11) we see the percentage of classifications that are
in agreement or disagreement with the original label of the object.
From here we can see that objects voted in the options "Certain lens",
"Probable lens" and "Very unlikely" are in general well classified,
achieving overall a 99%, 83%, and 80% of objects correctly labelled.
On the other hand the classification "Probably not lens" is evenly
split between labelled lenses and labelled non-lenses.
To see in more detail the performance for each of the labelled

data sets, we calculated a confusion matrix displaying the percentage
of classifications according to the four different options for each
data set. From Fig. 12 we can see that the three data sets labelled
as "Non-lenses" obtained a very high percentage of votes in the
option "VeryUnlikely". However, there is confusionwhen classifying
the simulated strong lens systems. SLACS lenses are mostly not
recognized as lenses and only the four "R22 lenses" get a high amount
of classifications in the categories "Certain lens" and "Probable lens".
From the classifications of the labelled data, we compute confusion

matrices for each user. In this section, we call objects Lenses if they
are classified as either "Certain lens" or "Probable lens". Systems
classified as "Probably not lens" or "Very unlikely" are considered
Non-lenses. In that way we build a 2 × 2 confusion matrix that will
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Figure 6. Mosaic of the SLACS sample in the DES. We displayed the cutouts of each system in the same three different scales presented in the experiment:
Default, Blue and Sqrt. On the cutout with the Default scale we added on the top the name of the system and on the bottom the visual inspection mean score
obtained in this search and the score given by the CNN trained in Rojas et al. (2022).

tell us what it is the probability that a user classifies an object as
"Lens" or "Non-lens" given that the true label is "Lens" or "Non-
lens", this means the true positive and true negative rates in the
confusion matrix.

Following Marshall et al. (2015) we plotted these probabilities in
Fig. 13, where we can see that most of the classifiers have very low
false positive rates. This makes these classifiers extremely good at
identifying easy lenses, but there is a significant range in their ability
to identify challenging lenses. Some classifiers manage complete-

ness of ∼ 60% at high purity, whilst more pessimistic classifiers are
identifying half as many lenses.
A handful of the classifiers are more optimistic, classifying more

marginal systems as lenses. This comes at the cost of more false
positives, which is not desirable in a real search where lenses are
intrinsically rare.
Additionally, we computed the same 2 × 2 confusion matrix join-

ing all the classifications of the users among the different groups
separated by academic status, years of experience and confidence in
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Figure 7.Mosaic of the four systems in Rojas et al. (2022) classified in their
category "Sure lens" displayed in the three different scales presented in this
experiment. On the cutout with the Default scale we added on the top the
name of the system, and on the bottom the mean score (s) from our visual
inspection, the CNN (cnn) and visual inspection score (R22) from Rojas et al.
(2022)

performing the classification. This gives a confusion matrix for each
grouping. To derive the error bars for these values, we use the stan-
dard deviation of the individual true positive and true negative rates of
each user in the group. Fig. 14 shows these results: overall the results
are very similar. That is to say that, regardless of academic status,
years of experience and confidence, each grouping produces a very
similar average classification. There are very significant differences
between individual users, but time in the field, academic position or
reported confidence are not predictive of a user’s classification skill.

4.2 How reliable are individual classifications?

To test the reliability of human classifications, we duplicated 105
objects in the sample. We randomly selected 15 objects from each of
the following data sets: CNN-best, LRGs,CNNs=0, Random,Default
simulations, "Bright" simulations, and Non-lens simulations. The
duplicate cutouts were shown at random points in the experiment 7.
Overall, we had a total of 3797 duplicated classifications, with

7 Because of the way Zooniverse serves images, some users finished the
classification task but continued to classify a small number of randomly
drawn images. We also took these into account in assessing the reliability of
classifications.

73% graded the same as before. On the other hand, 15% (10%)
received an upgrade (downgrade) of one point in the classification,
this means that if for example an object was originally classified as
"Probable lens" in the second time performing the classification the
user classified the object as "Certain lens" in the upgrade case and
as "Probably not lens" in the downgrade case. Only 1.3% (0.6%)
of the classifications were upgraded (downgraded) by 2 points, and
0.13% (0.03%) by 3 points, which means changing completely the
classification from "Certain lens" to "Very unlikely" or vice versa.
These very low percentages for extreme cases are a very good sign

that the users are not obtuse classifiers and are somehow confident
about their classifications.When we break these results down by self-
reported confidence (Fig. 15), we see that "Very confident" users
perform relatively consistently, with a ∼ 75% of reliability in the
two extreme classification options. On the other hand, the users that
signed as "Not confident" hesitate more at the time to use the "Certain
lens" option, reaching only 40% of reliability in this class, but a 76%
of reliability in the option "Probable lens" shows that they are more
comfortable with this more ambiguous selection.

4.3 How many classifiers are needed for a reliable score?

The classification of an object into any of the options is a personal and
subjective opinion. Even with clear guidelines and examples, there
will be disagreement among users, as the visual inspection work in
Rojas et al. (2022); Savary et al. (2022) showed. Typical strong lens
searches have had a handful of expert classifiers (e.g. 3 for Jacobs
et al. 2019b). Given the individual expert variation seen in Sect. 4.1
and the lack of reliability seen in Sect. 4.2, it is to be expected that
using a small number of experts can significantly bias final scores. To
assess how significant this bias can be, we divide our classifications
into random ’teams’ of n users. We computed new scores using only
the classification of the team members. We did this for team sizes
ranging from one to twenty participants randomly drawn from our
users.
We compare the team scores with the final score from the entirety

of our classifiers. We created 200 teams of n random users to recal-
culate the score for objects labelled as lenses. Fig. 16 shows how the
team size affects the scoring of images. The standard deviation error
is substantial for very small teams but decreases quickly up to a team
size of ∼ 8, which has a classification error of 0.07 per object. Above
8 users the classification error decreases much more slowly. Given
that most objects are unambiguously classified as very unlikely (i.e.
score of 0), these represent big differences in scores for the other
objects: small teams are not very good at assessing the quality of a
strong lens candidate.
The results in this section go some way to explaining why the

scores of Rojas et al. (2022) vary from those of our classifiers. There
are not enough systems with overlapping data to draw firm conclu-
sions (9 images), but the standard deviation is 0.08, as is expected
for a team of 6 classifiers.
Since teams will be most concerned about discovering marginal

lenses, it is salient to focus on team accuracy when classifying lenses
with marginal scores. Focusing on images with true scores between
0.3 and 0.8 the classification error grows substantially: it is 0.17 for
a team of 2 classifiers, 0.12 for a team of 4 and 0.07 for a team of 8.
A team of 6 classifiers is required to achieve an expected accuracy
better than 0.1, 15 are needed for an accuracy better than 0.05.
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Figure 8. Examples of the 16 highly graded cutouts in the unlabeled data sets. The CNN-best data set is displayed in the two top panels, on the bottom of the
cutouts we present the mean score (s) from this experiment, and visual inspection score (R22) from Rojas et al. (2022) in case they were part of the final catalogs
presented in that work. The CNN score for all these objects is CNN 1.00. The Random sample is shown in the two bottom panels, on the bottom of each cutout
we display the mean score (s) from this experiment, and the CNN score (cnn) from Rojas et al. (2022).
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Figure 9. Comparison between the human expert scores from our classifiers
and the CNN scores given by the model in Rojas et al. (2022). The dashed
black line is the one-to-one line. Grey triangles are from the unlabeled 300
randomly drawn DES images. Squares are non-lens labelled data sets, in blue
LRGs and in green the simulated non-lenses. Circles are simulated lenses, in
yellow the bright data set and in red the default data set. Purple Stars are the
SLACS lenses.

5 CONCLUSIONS

This work has investigated how strong lensing experts visually in-
spect images of galaxy-scale strong lens candidates.We showed them
a sample of 1489 mock and real images of the Dark Energy Survey
and asked them to grade each image as either: Certain lens; Prob-
able lens; Probably not a lens; or, Very unlikely to be a lens. With
the resulting 66835 classifications we can now answer our initial
questions.

• What are the properties of lensing systems that human experts
identify reliably as lenses, and what do they miss?

Most gravitational lenses are reliably identified with an Einstein Ra-
dius greater than 1.2′′and an arc g-band magnitude less than 23.
This corresponds to roughly 1.2 times the seeing of the Dark Energy
Survey and a g-band signal-to-noise of 25. Some lenses are discov-
ered with fainter or smaller radius arcs. The Einstein radius cut-off is
sharp with only a handful of very bright arcs discovered with Einstein
radius of less than 1.2′′. The flux cut-off is smoother: roughly twenty
percent of lenses are recovered even with an arc signal-to-noise of
between 4 and 10.

• Do human experts confuse non-lenses for lenses?

For our labelled data, none of the non-lenses scored higher than
0.3. Our simulations do not include face-on spirals, or ring galaxies,
but the experts had no problem rejecting chance alignments of blue
sources close to LRGs. Our labelled sample had an almost equal
split of lenses and non-lenses. Unless robotic candidate selection
improves substantially, real lens searches will have far more non-
lenses than lenses, even so, it seems that human experts are very
good at discarding the kinds of non-lenses shown here. Follow-up
campaigns should be confident that highly scored candidates are
almost certainly lenses.

• How does expert classification depend on the experience and
confidence of the experts?

We see substantial variation in the purity and completeness of indi-
vidual classifiers, but there are no significant trends with experience,
confidence, or academic position. None of these traits reliably predict
the over-pessimism or over-optimism of some users.

• How reliable are individual classifications?

Classifications are not reliable when repeated. Even classifiers who
self-report as ’very confident’ do not grade candidates consistently.
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Figure 10. Scatter plots comparing source color (g-i) and g-band source magnitude (left) and Einstein radii and the logarithm of the SNR in g-band (right)
for simulated lenses. Circular blue-red markers have a CNN score above 0.9, Star shaped green-purple markers have a CNN score below 0.1. The markers are
colored according to the mean visual inspection score
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Figure 11. Confusion matrix of the four different classification options, "Cer-
tain lens", "Probable lens", "Probably not lens" and "Very unlikely" contrasted
with the real labels L: lens and NL: No lens. The percentages shown are the
number of lenses (non-lenses) classified in a determined option.

When reclassifying the same images, certain and very unlikely lenses
are scored the same roughly three-quarters of the time by confident
and very confident classifiers, whereas probable and probably not
lenses are only reproduced three-fifths of the time. Fewer than 2
percent of reclassified targets changed bymore than one classification
step.

• When ranking lens candidates, what do the scores of teams of
experts mean? How should lens searchers best build an expert team
to classify their candidates?

Given the fact that classifications by a single expert are not reli-
able when repeated, it is not surprising that small teams make for
poor classifiers. On a 0-1 scoring system, teams of 6 classifiers will
produce results within 0.1 of the ensemble average of all users when
classifyingmarginal systems. Senior classifiers are, on the whole, not
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Figure 12. Confusion matrix of the seven different labeled data sets analyzed
in this experiment contrasted with the classification options CL: Certain
lens, PL: Probable lens, PNL: Probably not lens and VU: Very unlikely. The
percentages represent the amount of classifications made in each category.

better than junior classifiers so teams should classify independently
and not defer to the opinions of senior faculty members.
We found no correlation between CNN and human scores sug-

gesting that CNNs are not trained to recognise the same features
as human experts. Bigger samples are needed to assess if this is a
problem for lens finding in future surveys.
A traditional search would use a small number of classifiers to

grade a large number of images. To understand the human classifi-
cation process, we have done the opposite. In the real Universe, real
lenses are much rarer than our sample, so it is possible that our results
do not perfectly scale to a search of a billion objects. However, if we
assume that our discovery thresholds map onto searches of entire
surveys our results suggest that previous forecasts are likely to be
somewhat optimistic. The discovery signal-to-noise of our experts
is broadly consistent with the assumptions of Collett (2015), how-
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Figure 13. Completeness and purity percentages of each user when classify-
ing our labelled data.

ever our experts recovered few lenses with Einstein radius less than
1.2′′, which represents∼40 percent of the forecasted DES population
in Collett (2015). Collett (2015) had assumed that users would be
shown lens-subtracted images, such as in Sonnenfeld et al. (2018)
and future work should investigate if expert inspection can recover
even more lenses with such an approach.
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Figure 14. Probability that an object is classified as "Lens" given that it is
a lens (true positive rate) vs. the probability that the object is classified as
"Non-lens" given that it is not a lens (true negative rate). The values for each of
the users are displayed with a black circle, whose size represents the amount
of classification made by that user. The coloured stars represent the joint
result of the different groups of classifiers presented in this work, separated
by academic position (top panel), years of experience (middle panel) and
confidence in performing the classification task (bottom panel).
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Figure 15. Reliability of repeat classifications by users, as a function of
the classification and user reported confidence before starting the task. The
percentages shown are the fraction of objects that have the same classification
both times it was scored by a single user
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Figure 16. Comparison of the standard deviation of scores obtained from a
subset (team) of users relative to the ’truth’ from all classifiers. This figure
shows that small teams are prone to inaccurate classifications
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APPENDIX A: INVITATION

We send an invitation to members of the strong lensing community,
including LSST, DES, and Euclid strong lensing working groups and
we extended the invitation to Space Warp citizen scientists. They
received the following invitation:

"Wewould like to invite you to participate in a lens classification experiment
with the goal of understanding how people in the field of gravitational lensing
are performing when they do a visual classification task. The task will take
about an hour of your time. Participants will be invited to coauthor the
resulting paper.
The motivation of this experiment comes from the explosion of new lens
systems discovered by the use of CNN and subsequent validation through
visual inspection performed for each team. There seem to be lots of differences
in the expert validation and we want to see if this can be understood and
calibrated.
We expect that with this social experiment we can get key conclusions about
our performance, and hope that in the future lens finders can benefit from this
information. If you want to be part of this experiment please fill this quick
google form first. The information requested here will help us to analyze the
data, although your personal data (name, email and galaxy zoo username)
will remain private.
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Expert visual inspection of strong lenses 15

And now you are welcome to classify 1000 objects! If you follow this link8

You will see DES gri-color composite images of each object, each stamp has
a size of 50x50 pixels (13"x13"). The same object is displayed in 3 different
color-scales to help the recognition of features. The task is simple: you have
to click on the option that better represents the object(s) in the image and go
to the next.
You don’t have the obligation to complete the classification all at once, this
might take you a couple of hours. Your progress is recorded and you can come
back anytime you want ;). For a successful analysis we hope you can commit
to completing the classification of the whole data set, or at least a big portion
of it.
Please share this among your group, postdocs, phd students, masters students,
etc, that work in the field of strong lensing. All are encouraged to participate
as we want to test a broad variety of expertise, but please do not share it
among people outside of the field."

APPENDIX B: IMAGE SCALINGS

The "default" and "blue" composite images are scaled with an arcsinh
stretch using (HumVI, Marshall et al. 2015). We tuned the rgb-scale
parameters, the brightness (Q) and contrast (α) for default (blue)
images as follows: r-scale = 1.0 (0.51), g-scale = 1.2 (0.68), b-scale=
2.8 (3.12), Q = 1.0 (0.64), α = 0.03 (0.03). The third image is scaled
using a square root image scaling. To ensure that the object of interest
is not overshadowed by another brighter one we set minimum and
maximum values for the pixels in the images. The minimum value is
obtained using a square of 5×5 pixels in the corners of the gri-images
and we select the minimum value among them. On the other hand,
the maximum value is obtained by placing a box of 10× 10 pixels in
the middle of the three images and obtaining the mean among them.
We use these two values to scale the three gri-images.

APPENDIX C: EXPERIENCE AND CONFIDENCE

In Fig. C1 we present the distribution of the levels of confidence
compared to the academic status and years of experience in the field,
according to the information provided by the classifiers when they
subscribed to this experiment. From both plots, we can clearly see
that at higher academic status or years of experience in the field,
the classifiers feel more confident that they will perform a successful
classification, while undergrad students and people with between 0-4
years of experience feel "not" or only a "bit confident".

APPENDIX D: SCORING SYSTEM

In addition, we wanted to explore the impact of weighting the classi-
fication of the users according to their percentage of correct classifi-
cations in each of the 4 options given. To obtain this percentage we
computed a 2 × 4 confusion matrix similar to Fig. 11 but this time
for each user. Then we take the 4 relevant percentages: Classified as
"Certain lens" or "Probable lens" given that it is a lens and "Probably
not lens" or "Very unlikely" given that it is not a lens. Using these
percentages as weight we then calculated a weighted mean score, this
means that we multiply each score by the corresponding weight, sum
them and divide by the sum of the weights. After weighting all the
classifications we re-scale the mean score weighted between 0 and 1
as we did with the previous score.

8 https://www.zooniverse.org/projects/krojas26/
experts-visual-inspection-experiment/classify
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Figure C1. The radar charts show the level of confidence that users have to
perform the classification task separately in academic status (top panel) and
years of experience (bottom panel).

We expected that weighting the mean score could provide a better
score system because it will take into account the performance of the
users, but most of the users performed in a pretty similar way. We
can see in Fig. D1 that the mean score and the mean score weighted
are highly correlated. For this reason, we are going to continue our
analysis using only the mean score and we are not going to explore
the mean score weighted implications in further analysis.

APPENDIX E: STANDARD DEVIATION

We calculated the standard deviation of the scores given to each
object in the experiment. With this information, we create a heat
map (Fig. E1) to compare the standard error of the recovery fraction
of the simulated lenses data sets in response to the signal-to-noise
ratio in the g-band, the magnitude of the arc in the g-band and the
Einstein radius of the lens. In contrast with the heat maps with the
average scores (Fig. 5), we do not see any trend in the standard
deviation.
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Figure D1. Scatter plot of the mean score compared with the mean score
weighted by the corresponding percentage of successful classification in the
options displayed.

APPENDIX F: VISUAL INSPECTION VS CNN SCORE

In Sect. 3.4 We compared the results of this experiment with the
score given by the CNN trained by Rojas et al. (2022). In order to
understand why the CNN is able to classify slightly more systems
than human we displayed in Fig. F1 examples of those simulations
that the CNN graded as good candidates (CNN > 0.9) but human
visual inspectors graded with a low score (s < 0.5), meaning they
were classified as not good lens candidates. Additionally we explored
the opposite CNN range of classification score (CNN < 0.1), where
CNN and humans agree given that all simulations obtain s < 0.5, as
can be seen in Fig. 10.
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Figure E1. Heat maps with the average standard deviation of the mean score per bins for the objects in the simulated lenses data sets. The left panels correspond
to the "Bright" simulations, while the right panels to the "Default" simulations. In the top panels we display the logarithm of the SNR in g-band, while in the
bottom panels we present the magnitude of the arc in the g-band.
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Figure F1.Mosaic with 80 examples of simulations that human visual inspectors graded with a score below 0.5. The first 40 are images where the humans and
CNN disagree (CNN with a score above 0.9) and the other 40 show broad agreement between human and CNN (CNN score<0.1 0)
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