119 research outputs found

    Boosting Learning for LDPC Codes to Improve the Error-Floor Performance

    Full text link
    Low-density parity-check (LDPC) codes have been successfully commercialized in communication systems due to their strong error correction capabilities and simple decoding process. However, the error-floor phenomenon of LDPC codes, in which the error rate stops decreasing rapidly at a certain level, presents challenges for achieving extremely low error rates and deploying LDPC codes in scenarios demanding ultra-high reliability. In this work, we propose training methods for neural min-sum (NMS) decoders to eliminate the error-floor effect. First, by leveraging the boosting learning technique of ensemble networks, we divide the decoding network into two neural decoders and train the post decoder to be specialized for uncorrected words that the first decoder fails to correct. Secondly, to address the vanishing gradient issue in training, we introduce a block-wise training schedule that locally trains a block of weights while retraining the preceding block. Lastly, we show that assigning different weights to unsatisfied check nodes effectively lowers the error-floor with a minimal number of weights. By applying these training methods to standard LDPC codes, we achieve the best error-floor performance compared to other decoding methods. The proposed NMS decoder, optimized solely through novel training methods without additional modules, can be integrated into existing LDPC decoders without incurring extra hardware costs. The source code is available at https://github.com/ghy1228/LDPC_Error_Floor .Comment: 17 pages, 10 figure

    Décomposition en ondelettes de maillages triangulaires 3D irréguliÚrement subdivisés. Application à la compression

    Get PDF
    - Nous proposons un nouvel algorithme de subdivision qui permet la simplification des maillages triangulaires quelconques à l'aide de la transformée en ondelettes. Cet algorithme est appliqué à la compression sans pertes des maillages. Des résultats expérimentaux montrent l'efficacité de cette approche dans des représentations multirésolutions

    Privacy-Preserving Federated Model Predicting Bipolar Transition in Patients With Depression:Prediction Model Development Study

    Get PDF
    BACKGROUND: Mood disorder has emerged as a serious concern for public health; in particular, bipolar disorder has a less favorable prognosis than depression. Although prompt recognition of depression conversion to bipolar disorder is needed, early prediction is challenging due to overlapping symptoms. Recently, there have been attempts to develop a prediction model by using federated learning. Federated learning in medical fields is a method for training multi-institutional machine learning models without patient-level data sharing. OBJECTIVE: This study aims to develop and validate a federated, differentially private multi-institutional bipolar transition prediction model. METHODS: This retrospective study enrolled patients diagnosed with the first depressive episode at 5 tertiary hospitals in South Korea. We developed models for predicting bipolar transition by using data from 17,631 patients in 4 institutions. Further, we used data from 4541 patients for external validation from 1 institution. We created standardized pipelines to extract large-scale clinical features from the 4 institutions without any code modification. Moreover, we performed feature selection in a federated environment for computational efficiency and applied differential privacy to gradient updates. Finally, we compared the federated and the 4 local models developed with each hospital's data on internal and external validation data sets. RESULTS: In the internal data set, 279 out of 17,631 patients showed bipolar disorder transition. In the external data set, 39 out of 4541 patients showed bipolar disorder transition. The average performance of the federated model in the internal test (area under the curve [AUC] 0.726) and external validation (AUC 0.719) data sets was higher than that of the other locally developed models (AUC 0.642-0.707 and AUC 0.642-0.699, respectively). In the federated model, classifications were driven by several predictors such as the Charlson index (low scores were associated with bipolar transition, which may be due to younger age), severe depression, anxiolytics, young age, and visiting months (the bipolar transition was associated with seasonality, especially during the spring and summer months). CONCLUSIONS: We developed and validated a differentially private federated model by using distributed multi-institutional psychiatric data with standardized pipelines in a real-world environment. The federated model performed better than models using local data only.</p

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska LĂ€karesĂ€llskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Abstract Background Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk
    • 

    corecore