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Abstract

Background: Mood disorder has emerged as a serious concern for public health; in particular, bipolar disorder has a less
favorable prognosis than depression. Although prompt recognition of depression conversion to bipolar disorder is needed, early
prediction is challenging due to overlapping symptoms. Recently, there have been attempts to develop a prediction model by
using federated learning. Federated learning in medical fields is a method for training multi-institutional machine learning models
without patient-level data sharing.

Objective: This study aims to develop and validate a federated, differentially private multi-institutional bipolar transition
prediction model.

Methods: This retrospective study enrolled patients diagnosed with the first depressive episode at 5 tertiary hospitals in South
Korea. We developed models for predicting bipolar transition by using data from 17,631 patients in 4 institutions. Further, we
used data from 4541 patients for external validation from 1 institution. We created standardized pipelines to extract large-scale
clinical features from the 4 institutions without any code modification. Moreover, we performed feature selection in a federated
environment for computational efficiency and applied differential privacy to gradient updates. Finally, we compared the federated
and the 4 local models developed with each hospital's data on internal and external validation data sets.

Results: In the internal data set, 279 out of 17,631 patients showed bipolar disorder transition. In the external data set, 39 out
of 4541 patients showed bipolar disorder transition. The average performance of the federated model in the internal test (area
under the curve [AUC] 0.726) and external validation (AUC 0.719) data sets was higher than that of the other locally developed
models (AUC 0.642-0.707 and AUC 0.642-0.699, respectively). In the federated model, classifications were driven by several
predictors such as the Charlson index (low scores were associated with bipolar transition, which may be due to younger age),
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severe depression, anxiolytics, young age, and visiting months (the bipolar transition was associated with seasonality, especially
during the spring and summer months).

Conclusions: We developed and validated a differentially private federated model by using distributed multi-institutional
psychiatric data with standardized pipelines in a real-world environment. The federated model performed better than models
using local data only.

(J Med Internet Res 2023;25:e46165) doi: 10.2196/46165
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Introduction

Background
Mood disorders such as depression and bipolar disorder (BD)
significantly cause disability that severely limits individual
psychosocial functions and lowers the quality of life [1]. BD
has a less favorable prognosis and needs treatments different
from those needed for depression, although both have
overlapping symptoms and pathophysiology [2,3]. Prompt
recognition of depression conversion to BD may help prevent
the negative consequences of BD because BD is initially
confused with depression [4,5]. However, early BD recognition
or prediction among people with depression is challenging due
to delayed diagnostic differentiation.

Several machine learning studies have been conducted to predict
the diagnostic transition from depression to BD. One study [6]
developed models with an area under the curve (AUC) of 0.76.
However, the model was developed using a single center, and
the performance deteriorated to ≤0.71 in external validation.
Nestsiarovich et al [7] developed a prediction model of the
conversion from depression to BD across multiple databases in
the United States. That model had poor performance during
external validation and its overall performance was modest.
Further, that study [7] was conducted using data centralization,
which cannot be universally adopted in many nonprofit
institutions due to privacy and regulatory concerns [8],
especially in highly sensitive fields such as psychiatry [9].

Recently, McMahan et al [10] proposed a novel federated
learning (FL) algorithm that trains a universal model across
several clients without data centralization. Global weights are
initially distributed to individual clients in each round of FL,
and the model is trained in the local data set. Then, the weights
are updated with the local data set and transmitted to the global
server and aggregated, and this round is repeated for a
predetermined number of rounds. FL is considered a
privacy-preserving method for training a multi-institutional
model by sharing only model weights and not patient-level data.
Some medical studies using FL, such as those predicting clinical
outcomes in patients with COVID-19 [11], revealed the
feasibility of FL. However, the following obstacles remain in
medical FL: (1) absence of a standardized data pipeline, (2)
privacy leakage, and (3) hardware limitations [12].

The first challenge is the absence of a standardized feature
extraction pipeline. Each hospital has a different electronic
health record structure. Local research collaborators have to
preprocess and extract features themselves without a

standardized pipeline. Hence, individual analysis codes are
generated in as many as the number of hospitals, thereby
reducing transparency, reproducibility, and interoperability and
causing data quality instability that adversely affects the overall
model performance [13]. This process consumes enormous
resources for each hospital, thereby slowing the research
progress, reducing scalability, and preventing data-driven
approaches. Therefore, conducting FL on a standardized feature
extraction pipeline that works universally across these hospitals
is required.

The second challenge is privacy leakage, which can occur during
both feature extraction and model development. A person with
prior information is at risk of identifying the patient in feature
extraction, even with anonymized data [14]. In particular, the
risk of such patient identification is higher in small hospitals,
suggesting that patient-level data access should be minimized
even for local researchers. The shared weights may indirectly
expose patient-level data in model development. Moreover, the
weight sharing is repeated in several rounds, thereby increasing
the risk of leakage. Adequate countermeasures such as
differential privacy to quantify and limit privacy leakages are
required [13,15].

The third challenge is hardware limitations. Most hospitals lack
the computational resources for FL. The training speed of FL
is tailored for the slowest client because the weights of all
hospitals must be gathered before proceeding. The FL process
can exclude some hospitals with a slow training speed, thereby
reducing the available data and making the model less robust.
Medical data are well-known for sparsity, and the model training
time is generally known to be reduced while maintaining the
model performance through appropriate feature selection [16].
Thus, overcoming the hardware limitation by finding a way to
apply feature selection in an FL environment is necessary.

Objectives
In this study, we aimed to develop a federated bipolar transition
prediction model that overcomes the obstacles of FL. This study
aims to standardize the feature extraction pipeline, apply
differential privacy, reduce the model training time, and develop
a standardized single analysis code for all hospitals.

Methods

Data Sources
We recruited 4 teaching hospitals, namely, Ajou University
School Of Medicine (AUSOM; January 1994 to February 2022),
Kyung Hee University Medical Center (KHMC; January 2008
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to February 2022), Myongji Hospital (MJ; June 2006 to October
2021), and Kangdong Sacred Heart Hospital (KDH; January
2005 to October 2021) to develop the model. We used Kangwon
National University Hospital (KW; January 2003 to January
2022) located in a geographically administratively separate area
for external validation of the model. All development and
external validation participating hospitals were teaching
hospitals from other universities and foundations. We used
Observational Medical Outcomes Partnership Common Data
Model (OMOP CDM) as the data format. OMOP CDM is a set
of uniform data standards that regulates the format and content
of observational data maintained by the Observational Health
Data Sciences and Informatics (OHDSI) [17,18]. OHDSI is an
interdisciplinary collaboration undertaken by a multi-stakeholder
group to discover the value of observational data. More than
2000 researchers worldwide participate in OHDSI, and 74
countries have converted or are converting data to OMOP CDM
[19]. The electronic medical record data in South Korea from
37 hospitals with 50 million patients were converted to OMOP
CDM [20]. Then, the data-converted hospitals formed a network
called FeederNet (Federated E-Health Big Data for Evidence
Renovation Network), a bio-health big data platform that was
invented by RWP and supported by the Korean National Project
to collaborate with OHDSI networks. The electronic medical
record patient data of each hospital were pseudonymized and
standardized based on OMOP CDM and stored in each
institution. Each hospital’s extract, transform, and load process
to OMOP CDM was conducted by an honest broker in the
hospital; thus, we used only data from which personal

information was already deleted. Data quality was checked
using the automated Achilles tool and regularly inspected by
experts [21].

Overview of Model Development
This study model was developed and validated through 4 stages:
(1) standardized feature extraction, (2) federated feature
selection, (3) FL, and (4) cross-site evaluation. Figure 1
illustrates an overview of the model development. In the first
step, we extracted features from all research-participating
hospitals with the standardized feature extraction code. We
reduced the number of features while maintaining model
performance in the federated feature selection. Then, we
conducted FL. The FL process entailed sending the global
weight from the central server to the client, performing a local
update on each client, and aggregating the weights. The above
iteration was repeated. We used the federated averaging
algorithm for the weight aggregation algorithm and applied
differential private-stochastic gradient descent (DP-SGD) during
the local update to ensure differential privacy. Through these
processes, we successfully developed a federated, differentially
private deep learning model based on the selected features
without sharing patient-level data. In addition, we developed a
deep learning model using only each client’s local data to
compare model performance. After model development, we
validated the model by using cross-site evaluation. We compared
the performance of the federated model with the local models
and performed external validation at a hospital that did not
participate in the model development.
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Figure 1. Overall workflow of the study. AUSOM: Ajou University School Of Medicine; DP-SGD: differential private-stochastic gradient descent;
KDH: Kangdong Sacred Heart Hospital; KHMC: Kyung Hee Medical Center; MJ: Myongji Hospital.

Study Participants
Previously validated cohort definitions and extraction codes
from Nestsiarovich et al [7] were used with the OMOP CDM.
The target cohort was defined as individuals with the first
observable diagnosis of depression, and the outcome was defined
as having a BD diagnosis within 1 year after the depression
diagnosis. The study population included patients with

depression. The index date was defined as the patient’s first
depression diagnosis record. The inclusion criteria are age >10
years at the index date; at least 1 year of observation before the
index date; no BD, schizophrenia, or schizoaffective disorder
diagnosis before the index date; and no neuroleptics
(antipsychotics, antidepressants, mood stabilizers, and
anticonvulsants) before the index date. All participants were
followed up for 1 year or up to the day of BD diagnosis coding.
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The features included patient demographics, sex, age, diagnoses,
drug exposures, procedures, and measurements. More than
20,000 features were included. The study code was sent to each
client without modification, and the data were extracted from
the client OMOP CDM database and saved to the client training
server.

Standardized Feature Extraction
The features used in the model were standardized according to
the OMOP CDM. Study cohorts and outcome populations were
defined using standardized features. Cohort and feature
definitions produced by OHDSI ATLAS are printed in JSON
format. ATLAS is an interactive analysis platform for OHDSI
analysis tools [22]. We extracted labeled features by connecting
the JSON configuration to the CDM database and storing the
features in each client’s local server for FL. We also publicly
share the JSON configurations on GitHub for transparency and
reproducibility [23].

Federated Feature Selection
One of the major challenges with FL is the lack of computational
resources. This study trained the model by using only the central
processing unit (CPU) in all the hospitals. Thus, local training
in each hospital was the main bottleneck in our case rather than
the network communication problem. We had to distill the
features through federated feature selection to accelerate model
development.

In the above process, we had to search for the number of input
features (optimal N) because the learning speed will be slow if
N is too large and performance will be too poor if N is too small.
However, investigating all search spaces of N is extremely
expensive. Accordingly, we set the initial N to 25 and performed
FL to calculate the weighted mean AUC in the validation data
set of 4 hospitals. Then, we increased N, trained the federated
model, and calculated model performance. We repeated the
above search, continuously increasing N. However, we stopped
the optimization early if the model performance did not increase
by more than 2% in 3 consecutive searches. Specifically, we
trained a local gradient boosting model on each client’s training
data set and aggregated the feature gain importance of each
local boosting model and averaged out feature importance. We
used the top N features for FL based on averaged feature
importance. Moreover, we only included features that were
present in all of the internal data sets. We chose the LightGBM
algorithm because it quickly trains even on CPU and has
repeatedly proven its feasibility on medical tabular data sets
[24]. Every hyperparameter uses the default value of the Python
LightGBM package.

FL Process
We used FL, which was proposed by McMahan et al [10], for
the development of a multicenter model without patient-level
data sharing. The following 4 steps were repeated for each round
in FL: (1) the global model weights are sent to each client, (2)
each client trains the model on its data set, (3) only locally
updated model weights and related meta information are sent
to the central server, and (4) the new global model weights are
computed by aggregating the centrally transmitted local model
updates. The total rounds and the epochs of local training are

hyperparameters. Our study trained only 5 rounds in FL and
allowed 5 epochs to be trained in each round. We used federated
averaging as the aggregation step [10]. The loss was aggregated
from each client’s local tuning set in every round of FL. The
model of the round with the lowest aggregated loss was used
as the final model.

We used Deep and Cross Network (DCN) as the model
algorithm [25], which showed feasibility in medical FL [11,25].
DCN is a model suitable for sparse large tabular data sets and
has been used in medical FL. It utilizes data embedding,
stacking, and cross-networking while maintaining deep neural
network strength. We developed a local model based on the
DCN algorithm using only each client’s training and tuning
data set to compare with the federated model. We trained the
model for 25 epochs in each client. The model of the epoch
with the lowest loss was selected as the final local model.

Application of Differential Privacy
Additionally, we used DP-SGD in the model training to apply
differential privacy in model development [15]. Differential
privacy is a strong privacy guarantee for FL. Differential privacy
quantifies privacy loss generated in data use. It allows us to
compare and control the privacy loss of different settings.
Pr[M(d1) ∈ S] ≤ exp(ε) Pr[M(d2) ∈ S] in ε-DP must be satisfied
when specific algorithm M is applied to any data sets d1 and
d2 that differ only by 1 row and S means set of all possible
outputs of M. ε is called the privacy budget. Privacy protection
becomes absolute when ε becomes 0, but the algorithm becomes
useless because all predictions will be the same. The
performance generally improves as ε increases, but the privacy
loss also increases. Thus, we can adjust the trade-off between
performance and privacy loss by controlling the amount of ε
[26]. DP-SGD applies differential privacy to gradient updates
in the training phase rather than applying differential privacy
to the trained model. The DP-SGD method clipped the L2 norm
of each gradient and added noise with a predefined
hyperparameter at each step of the update. DP-SGD has 2
hyperparameters: noise multiplier and multiple gradient norms.
We observed the federated model’s mean AUC in 4 development
hospitals’ tunning data sets by changing each hyperparameter
in the search space of 0.5,1.0, 2.5, and 5.0. We use Rényi
differential privacy accountant for privacy loss analysis [27].

Cross-Site Evaluation
Cross-site evaluation is a process for comparing federated and
local models without test data set sharing. We distributed 4 local
models and 1 federated model to all clients, calculated the
metrics from each client’s test data set, and aggregated the
metrics. The cross-site evaluation aimed to show the FL model’s
generalizability and noninferior performance versus the local
model developed in the test hospital. We compared the federated
model versus the mean AUC of the local models in cross-site
evaluation. Further, we compared the federated model to the
local models developed in the test hospital to show that the
federated model is not inferior to the locally specialized model.
Furthermore, we externally validated the federated and local
models at a geographically and administratively separate
hospital. We randomly downsampled patients without BD
transition to create a balanced test data set with 1:1, 1:3, 1:4,
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and 1:9 ratios of patients without outcomes versus patients with
outcomes because model performance is sensitive to outcome
imbalance. We bootstrapped downsampling 1000 times and
calculated the mean AUC and 95% CI in a balanced data set.
Additionally, for estimating model calibration, we calculated
the Brier score of federated, AUSOM, KHMC, MJ, and KDH
models in internal and external test data sets. Brier score is the
mean squared difference between predicted probability and the
actual outcome; a lower Brier score implies better calibration.

Statistical Analysis
Data from the 4 development hospitals were divided into 7:1:2
(training, tuning, and test, respectively) on a patient basis. All
patient data were used for external validation in the external
validation hospital (KW). The summary statistics of the 4
development hospitals were inspected using 2 different methods.
First, we used the baseline characteristic table, which is
commonly used in clinical studies. Categorical variables were

described as percentages and were compared using the χ2 test
for baseline characteristics. P values <.05 were considered
statistically significant. Second, we used Uniform Manifold
Approximation and Projection (UMAP) to visualize the data
characteristics of the 4 model development hospitals [28].
UMAP is a visualization technique by dimension reduction.
UMAP models manifold data with a fuzzy topological structure
and finds a low-dimensional projection embedding with the
nearest equivalent fuzzy topological structure. The analyses for
cohort creation and feature extraction were performed using R
software version 3.6. (The R Project for Statistical Computing),
the FeatureExtraction R library of OHDSI, and open-source
statistical R packages [29].

The Amazon web service was used for the central server and
the local training server in each participating hospital. We used
the FeederNet distributed research network. PyTorch 1.8 and
Flower 1.1 were used for federated model development. Google
Remote Procedure Call was used for network connection. We
visualized SHAP (Shapley Additive Explanations) beeswarm
plots and bar plots of the federated model and the local model

in the research organizing center (AUSOM) for model
interpretability [30].

Ethics Approval
This study was approved by the institutional review board (IRB)
o f  A j o u  U n iv e r s i t y  M e d i c a l  C e n t e r
(AJOUIRB-MDB-2022-255). The IRB waived written informed
consent and approved this study. This study uses deidentified
CDM data to protect privacy and confidentiality. Therefore, the
type and amount of compensation was not part of this study.
Following IRB approval at AUSOM, access to KHMC, MJ,
KDH, and KW databases was allowed under the IRB mutual
recognition agreement (research-free zone agreement). This
study complied with the principles of the Declaration of
Helsinki.

Results

Baseline Characteristics of the Study Population
For model development, 279 outcomes were used out of 17,631
patient outcomes (AUSOM [outcomes/patients]: 30/3917,
KHMC: 58/5799, MJ: 146/4873, and KDH: 45/3042) and for
external validation, 39 outcomes were used out of 4541 patient
outcomes (KW). Table 1 shows the baseline characteristics of
the study participants across all 5 hospitals. The baseline
characteristics of each hospital are detailed in Tables S1-S5 in
Multimedia Appendix 1. In the age group younger than 40 years,
the proportion of patients with bipolar transition was higher
than that of patients without bipolar transition. Heart disease
and hypertension were more prevalent in patients without bipolar
transition. In patients with bipolar transition, severe depression
was more prevalent and, in the same vein, mild depression was
less prevalent. The distribution of sex between patients with
and without bipolar transition revealed no statistical difference.
The UMAPs of the development hospitals are detailed in Figure
2. KDH’s UMAP has almost no data projected to the lower
middle and upper right region, unlike the UMAP of other
hospitals, suggesting the heterogeneity of KDH’s data compared
to those of the other hospitals.
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Table 1. Baseline characteristics of the study population with or without diagnosis transition across all 5 hospitals.

P valueChi-square (df)Bipolar (n=318), n (%)Nonbipolar (n=21,854), n (%)Variable

.02a9.6 (3)Age (years)

33 (10.4)998 (4.6)<20

52 (16.4)1351 (6.2)20-29

38 (11.9)2034 (9.3)30-39

195 (61.3)17,471 (79.9)≥40

.940.01 (1)104 (32.7)7066 (32.3)Sex (male)

Medical history

.261.3 (1)15 (4.7)1405 (6.4)Diabetes mellitus

.04a4.1 (1)11 (3.5)1399 (6.4)Heart disease

.02a5.3 (1)36 (11.3)3550 (16.2)Hypertension

Psychiatric history

.171.9 (1)76 (23.9)4499 (20.6)Anxiety disorder

.002a9.9 (1)58 (18.2)5723 (26.2)Mild depression

<.001a26.6 (1)54 (17)1879 (8.6)Severe depression

.073.2 (1)3 (0.9)598 (2.7)Depression with psychosis

.570.3 (1)5 (1.6)481 (2.2)Substance use disorder

.02a5.1 (1)5 (1.6)109 (0.5)Suicidal thoughts or self-harm

aSignificant at P<.05.

Figure 2. The Uniform Manifold Approximation and Projection of patients with depression according to hospital databases. AUSOM: Ajou University
School Of Medicine; KDH: Kangdong Sacred Heart Hospital; KHMC: Kyung Hee Medical Center; MJ: Myongji Hospital; UMAP: Uniform Manifold
Approximation and Projection.

Federated Feature Selection
In our study, the model performance did not increase after
n=100. Finally, we developed a model using only 100 out of
21,042 features. Moreover, we calculated the one-epoch training
time, the model weight size, and the average performance of

the FL model according to N in all search spaces to demonstrate
the efficacy of our search method. The model performance could
achieve 98% of the highest performance with only n=100.
Otherwise, the model weight size and training time increase
linearly in proportion to the N. Detailed results are described
in Figure 3.
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Figure 3. Performance (area under the receiver operating characteristic curve), model size on disk, and training time of the federated model according
to the number of features. AUROC: area under the receiver operating characteristic curve.

Privacy-Preserving FL and Cross-Site Evaluation
We set the noise multiplier and multiple gradient norms to 2.5
and 0.5 for DP-SGD because the smallest privacy budget can
be achieved with the above parameters while preserving 95%
of the model performance compared to the best model. The
calculated privacy budget was 1.3 with the above
hyperparameter. DP-SGD hyperparameter selection is detailed
in Table S6 of Multimedia Appendix 1. Moreover, we developed
a local model by using only each client’s training and tuning
data sets for comparison with the federated model. The local
model was also developed based on only 100 features, the DCN
algorithm, and DP-SGD—same as the federated model.

Across all test data sets, the federated model showed a mean
AUC of 0.726, while the nonfederated single database models
showed mean AUCs of 0.642, 0.662, 0.707, and 0.692 in
AUSOM, KHMC, MJ, and KDH, respectively. This suggests
the higher generalizability of the federated model than that of
any other local model (Figures 4A-4B). Additionally, in the test
data set of each client, we compared the performance of the
federated model with that of the client’s local model. Calculated
AUCs were 0.819 versus 0.816 (federated vs local model,

respectively), 0.731 versus 0.736, 0.707 versus 0.715, and 0.649
versus 0.705 in AUSOM, KHMC, MJ, and KDH models,
respectively.

The federated model performed better than any other model in
external validation (Figure 4C). The AUCs of the federated,
AUSOM, KHMC, MJ, and KDH models were 0.719 (95% CI
0.646-0.792), 0.693 (95% CI 0.61-0.777), 0.642 (95% CI
0.561-0.723), 0.682 (95% CI 0.597-0.767), and 0.699 (95% CI
0.622-0.776), respectively.

The average Brier score of the federated model was 0.0150,
which was lower than that of AUSOM (0.0218), KHMC
(0.0154), MJ (0.0162), and KDH (0.0274). In the external
validation, the Brier score of the federated model was 0.009,
which was lower than that of AUSOM (0.017), KHMC (0.010),
MJ (0.011), and KDH (0.023). Detailed information is described
in Figure S1 of Multimedia Appendix 1. As shown in Table S7
of Multimedia Appendix 1, for a balanced test data set, AUC
decreased by only 0.007 in AUSOM, 0.001 in MJ, and 0.005
in KDH but increased in KHMC in a federated model evaluation
with the balanced data set. Moreover, AUC decreased by only
0.024 in external validation.
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Figure 4. A. Overview of the cross-site evaluation. B. Receiver operating characteristic and mean receiver operating characteristic curves of the
federated and local models on development test data sets. C. Performance of external validation using federated learning model and locally trained
models. AUC: area under the curve; AUROC: area under the receiver operating characteristic curve; AUSOM: Ajou University School Of Medicine;
KDH: Kangdong Sacred Heart Hospital; KHMC: Kyung Hee Medical Center; KW: Kangwon National University Hospital; MJ: Myongji Hospital.

Model Interpretability
The graphical explanation of the federated model’s top 10
features based on average impact on model output magnitude
is shown in Figure 5. The SHAP beeswarm plot is a scatterplot
where each point represents the SHAP value of a feature for a
particular instance in the data set. The x-axis value of each point

represents the SHAP value of that feature for that particular
instance. A positive SHAP value indicates an increase in the
risk of predicting a diagnostic transition and vice versa. The
SHAP bar plot shows the impact of each feature on model
prediction. The features are sorted by their importance in the
prediction, with the most important feature at the top of the plot.
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The length of the bar represents the magnitude of the effect on
model prediction.

Figure S2 of Multimedia Appendix 1 shows the federated
model’s top 20 features. All features used in the federated model
are presented in Table S8 of Multimedia Appendix 1. Figures
S3-S6 of Multimedia Appendix 1 show the graphical
explanations of the local models. In the 2 graphs in Figure 5,
the y-axes represent the top 10 features in the prediction model,
ranked in the descending order. The x-axis in the SHAP
beeswarm plot shows the SHAP value. The SHAP value of each
dot means the impact of a feature in the SHAP plot. For
example, high median values of severe major depression and
moderate depression diagnosis, anxiolytics, alimentary tract
and metabolism, zolpidem prescription, visiting month in
August, recurrent visit, body temperature, and young age at

20-24 years powerfully drive predictions toward the diagnostic
transition from major depressive disorder to BD. Low median
values of the Charlson index were more strongly predictive of
the diagnostic transition from major depressive disorder to BD
(Figure 5A). The types of features were generally similar
between the local model and the federated model. However, the
impact of the Charlson index feature was higher in the local
model (federated model: Figure 5B and Figure S2 of Multimedia
Appendix 1; local models: Figures S3-S6 in Multimedia
Appendix 1). In addition, antidepressant use was not in the top
10 features in the federated model but was in the top 10 features
in the local models, except KDH. In both the federated model
and the local models, antidepressant use was associated with a
lower risk of bipolar transition (federated model: Figure 5B and
Figure S2 of Multimedia Appendix 1; local models: Figures
S3-S6 of Multimedia Appendix 1).

Figure 5. Shapley Additive Explanations beeswarm plot (A) and bar plot (B).

Discussion

Principal Findings
We developed and validated a bipolar transition prediction
model by using distributed multi-institutional psychiatric data
in a real-world FL environment. Additionally, we successfully
standardized clinical feature extraction pipelines and applied
data-driven methods, preserved differential privacy, and
extracted clinically interpretable characteristics from the FL
model. FL primarily aimed to achieve generalizability. The
federated model’s average performance on all test data sets had
an AUC of 0.726, which is higher than the 0.642-0.707 of other
local models. The FL model performed better than any other
model in external validation. Additionally, the FL model was

well calibrated compared to any other model in internal and
external test data. Consistent performance across multiple
validations shows our model’s generalizability. Moreover, our
model showed only a minor performance degradation of ≤0.08
compared to the local model trained on that database, except
for KDH. The federated model performance dropped by 0.056
compared to the local model performance in KDH, presumably
because KDH has a different data distribution from other
hospitals, as visualized by UMAP. The model performance
degradation in such a nonidentical, independent data set is one
of the well-known challenges of FL. However, our model
performed better in KDH than any local models developed
outside of KDH, suggesting the KDH data with these different
distributions contributed sufficiently to the model’s training.
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SHAP analysis revealed features with high impacts on models
as well-known risk factors. Previous studies reporting the
association of diagnostic transition with younger age are
consistent with predictive features of the young age group in
our federated model [7,31]. A lower Charlson index with BD
transition could be explained by the association of BD with age
because of the strong positive association between Charlson
index and age [32]. The association between severe or moderate
depressive episodes with BD transition is in line with other
findings that bipolar converters had more severe depressive
symptoms than nonconverters [33]. Since there is no depressive
symptom itself in the electronic medical record data, the severity
was considered as a diagnosis of depression containing symptom
information such as moderate depression and severe depression.
The results supported anxiolytics among the depression-BD
switching predictors in this study that the prevalence of
comorbid anxiety disorders in patients with BD was higher than
that in patients with depression [34]. Regarding alimentary tract
and metabolism, there were significant correlations between
patients with BD and gastrointestinal symptoms [35]. Further,
somatic symptoms, including gastrointestinal symptoms, tend
to co-occur in patients with BD [36]. For the recurrent visit,
patients with anxiety appear to be frequent users of medical
services [37]. Considering that patients with anxiety have a high
rate of bipolar transition, it is likely that they had recurrent visits
for the same reason. Sleep disturbance also appears to be an
early symptom of BD [38]. Since sleep disturbances often
precede BD, zolpidem as a sleep aid could be described as a
predictor of bipolar transition. Our study revealed antidepressant
use as a predictor of the depression-BD transition risk within 1
year. Additionally, antidepressant use was associated with lower
risk, although antidepressant prescriptions were associated with
mood cycling and mixed, manic, or hypomanic episodes [39].
The association of antidepressants may be because
antidepressant use within 1 year before diagnosis was used as
a predictor. People who used antidepressants in advance but
did not experience diagnostic transition were included in the
study population, while people diagnosed with BD were
excluded from this study. Thus, the history of antidepressant
use without diagnostic transition could hypothetically have a
protective effect on mania/hypomania symptoms. The
abovementioned predictors were also reported by Nestsiarovich
et al [7]. Likewise, a systematic review of transition from major
depression to BD showed that the severity of depression, use
of antidepressants, and comorbidity such as anxiety disorder
were predictors [40]. However, family history of BD, history
of childhood trauma, and history of childhood abuse, which
were considered important variables in a systematic review and
other studies, were not included in our model [41]. Further,
features about temperature and seasonality were not included.
A previous study reported that patients with BD had a shorter
circadian period and increased body temperature amplitude
compared to healthy individuals [42]. For seasonality, patients
with BD experienced peak manic symptoms in the spring and
summer months, which supports August as a predictor in this
study [43]. This study result adds to evidence that variables not
present in the existing model could be used as the data-driven
model.

One of the major challenges to FL is heterogeneous clinical
data. The data extraction process requires individual codes for
each hospital, which is resource-consuming and prevents
transparent, interoperable, reproducible, and scalable studies.
This study used databases converted to OMOP CDM, which is
a set of structural and semantic standards about observational
data maintained by the OHDSI community [18]. Seventy-four
countries have converted or are in the process of converting
data to OMOP CDM. The clinical data from 37 hospitals in
South Korea were already converted to OMOP CDM [20]. We
extracted features with a single analysis code across hospitals
by using the same code as the previous study [7] conducted in
the United States, with standardized semantics and structure.
Through a single code, we extracted large-scale features, thereby
creating data-driven prediction models. We published and
disclosed our feature extraction settings in GitHub in JSON
format following the standard of the OHDSI community for
interoperability and transparency. Any medical institution with
an OMOP CDM database can reproduce and validate our study.
Additionally, it can be extended without code modification if
a new hospital wants to participate in training.

Practically, establishing network connections is one of the
hardest things in adoption. This study did not build a separate
network for only FL. Hospitals in Korea with OMOP CDM
databases formed a distributed network called the FeederNet.
In this network, patient data were pseudonymized by an honest
broker who is a third person other than the researcher [44], and
these data were stored in each institution and regularly inspected
for data quality. Moreover, each hospital can share aggregated
results in real time but not patient-level data. The above network
was initially adopted for drug adverse event surveillance. Still,
epidemiological analysis is the main interest of health care
institutions; thus, building network connections for only FL is
challenging. Creating a distributed, federated analytics platform
encompassing not only FL but also the epidemiological study
will be a practical approach for persuading multi-stakeholders
in hospitals.

Hardware insufficiency is another challenge in FL. Our study
was conducted only with the CPU in each hospital. We cannot
use all the features for training because the number of features
extracted in the extraction process was more than 20,000.
Accordingly, we reduced the features to 100 through the
federated feature selection process and revealed that the model
performance could be saturated with only 100 features. Through
the process of federated feature selection, we were able to
significantly reduce the size of the model while maintaining its
performance. As a result, we were able to reduce communication
costs, which is one of the biggest challenges in FL, by reducing
network latency and overhead caused by weight transferring.

There are 3 primary reasons for decreasing communication costs
[45,46]. First, in practice, many institutions lack the necessary
computational resources. By reducing the communication
overhead, system costs associated with FL can be minimized,
thereby lowering the barriers to entry. This allows for a greater
diversity of institutions to participate in research and, in the
long term, extends the applicability of FL to primary care
physicians or patient-generated health data. Second, from a
security perspective, limiting the volume of data exchanged
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during communication improves security measures, as increased
data exchange can potentially lead to heightened privacy loss.
Homomorphic encryption is regarded as a key
security-enhancing algorithm for future FL applications.
However, it significantly increases the size of data and
computational load. Consequently, the additional overhead
caused by such security enhancements can burden even what
we consider ample communication resources. Thus, reducing
overhead prior to encryption, as proposed in our study, can be
beneficial. Third, the benchmarks for sufficient computation
and communication resources are continually rising. The advent
of developments such as large language models has seen a shift
toward foundation models that generate large-scale models
based on massive data sets for general purposes. As a result,
the required computational power is rapidly increasing. Medical
prediction models are also evolving toward these foundation
models, thereby dramatically raising the standards for adequate
resources. Therefore, additional methods to reduce overhead,
like those presented in our study, are necessary. However, our
feature selection method included features that were not present
that exist in all internal databases. Although this approach was
feasible in our study, which was conducted in tertiary hospitals
within the same country using unified clinical coding systems,
it may be limited in studies involving a wider range of hospitals
or countries where the available features vary significantly.
Therefore, future studies should explore more comprehensive
feature selection methods and consider imputation methods to
incorporate features that are missing in some databases.

We conducted a study prepseudonymized by a third-party honest
broker to protect patient privacy. The analysis code was written
using only aggregated statistics, and the same code was
delivered to all institutions for research collaborators to not
access patient-level data. We applied differential privacy to
limit privacy leakage in the model training to prevent model
inversion, which means reconstructing original data from the
model gradients [11]. Some shortcomings remained, although
we tried to protect privacy through the above steps. We refined
the privacy budget when applying differential privacy. However,
the appropriate privacy budget has no consensus. We used the
strongest privacy while maintaining the model performance of
over 95% of maximum performance. However, privacy
parameters should be set first, regardless of model performance.
Therefore, more differential privacy studies in the medical field
should be conducted in the future to find appropriate values.

Limitations
Our study has a few limitations. First, this study used only
tabular data. Therefore, a multimodal model with natural text,
genetic data, or image data should be studied for more advanced
research in psychiatry. However, natural language may have a
more significant privacy leakage hazard. Learning natural
language data was practically impossible because only CPUs
exist in each hospital. Additionally, genetic data and image data
remained not integrated into OMOP CDM databases. Further,

we have to conduct a multimodal federated study by developing
an efficient architecture.

Second, our study was conducted in only a single nation due to
network connection problems. Hence, we conducted external
validation at another regionally and administratively separated
hospital to compensate for this limitation. However, future
studies should include data from other nations because training
insufficiency in the nonidentical, independent data set setting
is a well-known problem.

Third, our model did not include important but detailed variables
such as the family history of BD, history of childhood trauma,
and history of childhood abuse. This detailed information may
or may not be collected at each hospital. However, because FL
uses only common variables for generalization, these important
but detailed variables are not used in the prediction model.
However, if a hospital has recorded specific information, it can
be improved to include specific information by rebuilding the
model based on the FL model.

Fourth, the incidence of the outcome of interest in this study
was unbalanced (279/17,631, 1.58%). Despite the low incidence,
the prediction of bipolar transition has significant clinical value.
Although previous researchers such as Nestsiarovich et al [7]
and Pradier et al [6] have also developed models using data sets
with similar outcome incidences (2.7% and 1.4%, respectively),
this study shows the robustness of the model at various
incidences through a sensitivity analysis [6,7]. The clinician
should be cautious when using this model in clinical settings,
as the performance of this model can be greatly influenced by
the incidence of the outcome. Future research using various
strategies, including refining the cohort, matching clinical
variables, and algorithmic adjustments to solve the data set
imbalance problem, is needed.

Fifth, we preselected the model algorithm as DCN. Exploring
more model architectures would have been better, although
DCN showed feasibility for tabular medical data. However, this
study could not explore various models because of computer
resource limitations. Therefore, we plan to compare the
performance of tabular-based models in FL by performing
benchmark tests of the performance of several models in the
data of this study and an open multi-institutional database.

Conclusions
In summary, we utilized FL to predict bipolar transition in
patients with depression. Bipolar transition could be more
effectively predicted using the federated model than a model
based only on local data. Furthermore, we used distributed
multi-institutional psychiatric data with standardized pipelines
in a real-world environment, thereby providing a solution to the
challenges of FL, such as data heterogeneity, privacy leakage,
and limited computational hospital resources. In clinical
situations where data are distributed, our findings suggest that
FL would be more useful to develop the prediction model.
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