243 research outputs found

    Encoding Carbon Emission Flow in Energy Management: A Compact Constraint Learning Approach

    Full text link
    Decarbonizing the energy supply is essential and urgent to mitigate the increasingly visible climate change. Its basis is identifying emission responsibility during power allocation by the carbon emission flow (CEF) model. However, the main challenge of CEF application is the intractable nonlinear relationship between carbon emission and power allocation. So this paper leverages the high approximation capability and the mixed-integer linear programming (MILP) representability of the deep neural networks to tackle the complex CEF model in carbon-electricity coordinated optimization. The compact constraint learning approach is proposed to learn the mapping from power injection to bus emission with sparse neural networks (SNNs). Then the trained SNNs are transformed equivalently as MILP constraints in the downstream optimization. In light of the ``high emission with high price'' principle, the blocked carbon price mechanism is designed to price emissions from the demand side. Based on the constraint learning and mechanism design, this paper proposes the carbon-aware energy management model in the tractable MILP form to unlock the carbon reduction potential from the demand side. The case study verifies the approximation accuracy and sparsity of SNN with fewer parameters for accelerating optimization solution and reduction effectiveness of demand-side capability for mitigating emission

    Safety-aware Semi-end-to-end Coordinated Decision Model for Voltage Regulation in Active Distribution Network

    Full text link
    Prediction plays a vital role in the active distribution network voltage regulation under the high penetration of photovoltaics. Current prediction models aim at minimizing individual prediction errors but overlook their collective impacts on downstream decision-making. Hence, this paper proposes a safety-aware semi-end-to-end coordinated decision model to bridge the gap from the downstream voltage regulation to the upstream multiple prediction models in a coordinated differential way. The semi-end-to-end model maps the input features to the optimal var decisions via prediction, decision-making, and decision-evaluating layers. It leverages the neural network and the second-order cone program (SOCP) to formulate the stochastic PV/load predictions and the var decision-making/evaluating separately. Then the var decision quality is evaluated via the weighted sum of the power loss for economy and the voltage violation penalty for safety, denoted by regulation loss. Based on the regulation loss and prediction errors, this paper proposes the hybrid loss and hybrid stochastic gradient descent algorithm to back-propagate the gradients of the hybrid loss with respect to multiple predictions for enhancing decision quality. Case studies verify the effectiveness of the proposed model with lower power loss for economy and lower voltage violation rate for safety awareness

    Conservative Sparse Neural Network Embedded Frequency-Constrained Unit Commitment With Distributed Energy Resources

    Full text link
    The increasing penetration of distributed energy resources (DERs) will decrease the rotational inertia of the power system and further degrade the system frequency stability. To address the above issues, this paper leverages the advanced neural network (NN) to learn the frequency dynamics and incorporates NN to facilitate system reliable operation. This paper proposes the conservative sparse neural network (CSNN) embedded frequency-constrained unit commitment (FCUC) with converter-based DERs, including the learning and optimization stages. In the learning stage, it samples the inertia parameters, calculates the corresponding frequency, and characterizes the stability region of the sampled parameters using the convex hulls to ensure stability and avoid extrapolation. For conservativeness, the positive prediction error penalty is added to the loss function to prevent possible frequency requirement violation. For the sparsity, the NN topology pruning is employed to eliminate unnecessary connections for solving acceleration. In the optimization stage, the trained CSNN is transformed into mixed-integer linear constraints using the big-M method and then incorporated to establish the data-enhanced model. The case study verifies 1) the effectiveness of the proposed model in terms of high accuracy, fewer parameters, and significant solving acceleration; 2) the stable system operation against frequency violation under contingency

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    An embedding technique to determine ττ backgrounds in proton-proton collision data

    Get PDF
    An embedding technique is presented to estimate standard model tau tau backgrounds from data with minimal simulation input. In the data, the muons are removed from reconstructed mu mu events and replaced with simulated tau leptons with the same kinematic properties. In this way, a set of hybrid events is obtained that does not rely on simulation except for the decay of the tau leptons. The challenges in describing the underlying event or the production of associated jets in the simulation are avoided. The technique described in this paper was developed for CMS. Its validation and the inherent uncertainties are also discussed. The demonstration of the performance of the technique is based on a sample of proton-proton collisions collected by CMS in 2017 at root s = 13 TeV corresponding to an integrated luminosity of 41.5 fb(-1).Peer reviewe

    Search for Physics beyond the Standard Model in Events with Overlapping Photons and Jets

    Get PDF
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at root s = 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.Peer reviewe

    Measurement of b jet shapes in proton-proton collisions at root s=5.02 TeV

    Get PDF
    We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb(-1). To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators.Peer reviewe

    Bose-Einstein correlations of charged hadrons in proton-proton collisions at s\sqrt s = 13 TeV

    Get PDF
    Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s \sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s \sqrt{s} = 7 TeV, as well as with theoretical predictions.[graphic not available: see fulltext]Bose-Einstein correlations of charged hadrons are measured over a broad multiplicity range, from a few particles up to about 250 reconstructed charged hadrons in proton-proton collisions at s=\sqrt{s} = 13 TeV. The results are based on data collected using the CMS detector at the LHC during runs with a special low-pileup configuration. Three analysis techniques with different degrees of dependence on simulations are used to remove the non-Bose-Einstein background from the correlation functions. All three methods give consistent results. The measured lengths of homogeneity are studied as functions of particle multiplicity as well as average pair transverse momentum and mass. The results are compared with data from both CMS and ATLAS at s=\sqrt{s} = 7 TeV, as well as with theoretical predictions

    Search for dark matter in events with a leptoquark and missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search is presented for dark matter in proton-proton collisions at a center-of-mass energy of root s= 13 TeV using events with at least one high transverse momentum (p(T)) muon, at least one high-p(T) jet, and large missing transverse momentum. The data were collected with the CMS detector at the CERN LHC in 2016 and 2017, and correspond to an integrated luminosity of 77.4 fb(-1). In the examined scenario, a pair of scalar leptoquarks is assumed to be produced. One leptoquark decays to a muon and a jet while the other decays to dark matter and low-p(T) standard model particles. The signature for signal events would be significant missing transverse momentum from the dark matter in conjunction with a peak at the leptoquark mass in the invariant mass distribution of the highest p(T) muon and jet. The data are observed to be consistent with the background predicted by the standard model. For the first benchmark scenario considered, dark matter masses up to 500 GeV are excluded for leptoquark masses m(LQ) approximate to 1400 GeV, and up to 300 GeV for m(LQ) approximate to 1500 GeV. For the second benchmark scenario, dark matter masses up to 600 GeV are excluded for m(LQ) approximate to 1400 GeV. (C) 2019 The Author(s). Published by Elsevier B.V.Peer reviewe
    corecore