350 research outputs found

    Whom should be saved? A proposed ethical framework for allocating scarce medical resources to COVID-19 patients using fuzzy logic

    Get PDF
    COVID-19 is a global pandemic that affected the everyday life activities of billions around the world. It is an unprecedented crisis that the modern world had never experienced before. It mainly affected the economic state and the health care system. The rapid and increasing number of infected patients overwhelmed the healthcare infrastructure, which causes high demand and, thus, shortage in the required staff members and medical resources. This shortage necessitates practical and ethical suggestions to guide clinicians and medical centers when allocating and reallocating scarce resources for and between COVID-19 patients. Many studies proposed a set of ethical principles that should be applied and implemented to address this problem. In this study, five different ethical principles based on the most commonly recommended principles and aligned with WHO guidelines and state-of-the-art practices proposed in the literature were identified, and recommendations for their applications were discussed. Furthermore, a recent study highlighted physicians' propensity to apply a combination of more than one ethical principle while prioritizing the medical resource allocation. Based on that, an ethical framework that is based on Fuzzy inference systems was proposed. The proposed framework's input is the identified ethical principles, and the output is a weighted value (per patient). This value can be used as a rank or a priority factor given to the patients based on their condition and other relevant information, like the severity of their disease status. The main idea of implementing fuzzy logic in the framework is to combine more than one principle when calculating the weighted value, hence mimicking what some physicians apply in practice. Moreover, the framework's rules are aligned with the identified ethical principles. This framework can help clinicians and guide them while making critical decisions to allocate/reallocate the limited medical resources during the current COVID-19 crisis and future similar pandemics

    Effect of COVID-19 quarantine on the sleep quality and the depressive symptom levels of university students in Jordan during the spring of 2020

    Get PDF
    Objectives: This study was designed to assess the effect of COVID-19 home quarantine and its lifestyle challenges on the sleep quality and mental health of a large sample of undergraduate University students in Jordan. It is the first study applied to the Jordanian population. The aim was to investigate how quarantine for several weeks changed the students' habits and affected their mental health. Methods: A cross-sectional study was conducted using a random representative sample of 6,157 undergraduate students (mean age 19.79 ± 1.67 years, males 28.7%) from the University of Jordan through voluntarily filling an online questionnaire. The Pittsburgh Sleep Quality Index (PSQI) and the Center for Epidemiologic Studies-Depression Scale (CES-D) were used to assess sleep quality and depressive symptoms, respectively. Results: The PSQI mean score for the study participants was 8.1 ± 3.6. The sleep quality of three-quarters of the participants was negatively affected by the extended quarantine. Nearly half of the participants reported poor sleep quality. The prevalence of poor sleep quality among participants was 76% (males: 71.5% and females: 77.8%). Similarly, the prevalence of the depressive symptoms was 71% (34% for moderate and 37% for high depressive symptoms), with females showing higher prevalence than males. The overall mean CES-D score for the group with low depressive symptoms is 9.3, for the moderate group is 19.8, while it is 34.3 for the high depressive symptoms group. More than half of the students (62.5%) reported that the quarantine had a negative effect on their mental health. Finally, females, smokers, and students with decreased income levels during the extended quarantine were the common exposures that are significantly associated with a higher risk of developing sleep disturbances and depressive symptoms. Conclusions: Mass and extended quarantine succeeded in controlling the spread of the COVID-19 virus; however, it comes with a high cost of potential psychological impacts. Most of the students reported that they suffer from sleeping disorders and had a degree of depressive symptoms. Officials should provide psychological support and clear guidance to help the general public to reduce these potential effects and overcome the quarantine period with minimum negative impacts

    Transcriptional profiles of genes related to electrophysiological function in Scn5a+/− murine hearts

    Get PDF
    The Scn5a gene encodes the major pore-forming Nav1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/− genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/− animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS

    Transcriptional profiles of genes related to electrophysiological function in Scn5a+/- murine hearts.

    Get PDF
    The Scn5a gene encodes the major pore-forming Nav 1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav 1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav 1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/- genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/- animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS

    Consecutive isoproterenol and adenosine treatment confers marked protection against reperfusion injury in adult but not in immature heart:A role for glycogen

    Get PDF
    Consecutive treatment of adult rat heart with isoproterenol and adenosine (Iso/Aden), known to consecutively activate PKA/PKC signaling, is cardioprotective against ischemia and reperfusion (I/R). Whether this is cardioprotective in an immature heart is unknown. Langendorff–perfused hearts from adult and immature (60 and 14 days old) male Wistar rats were exposed to 30 min ischemia and 120 min reperfusion, with or without prior perfusion with 5 nM Iso for 3 min followed by 30 μM Aden for 5 min. Changes in hemodynamics (developed pressure and coronary flow) and cardiac injury (Lactate Dehydrogenase (LDH) release and infarct size) were measured. Additional hearts were used to measure glycogen content. Iso induced a similar inotropic response in both age groups. Treatment with Iso/Aden resulted in a significant reduction in time to the onset of ischemic contracture in both age groups whilst time to peak contracture was significantly shorter only in immature hearts. Upon reperfusion, the intervention reduced cardiac injury and functional impairment in adults with no protection of immature heart. Immature hearts have significantly less glycogen content compared to adult. This work shows that Iso/Aden perfusion confers protection in an adult heart but not in an immature heart. It is likely that metabolic differences including glycogen content contribute to this difference

    Hypothermia and Fever After Organophosphorus Poisoning in Humans—A Prospective Case Series

    Get PDF
    There have been many animal studies on the effects of organophosphorus pesticide (OP) poisoning on thermoregulation with inconsistent results. There have been no prospective human studies. Our aim was to document the changes in body temperature with OP poisoning. A prospective study was conducted in a rural hospital in Polonnaruwa, Sri Lanka. We collected data on sequential patients with OP poisoning and analyzed 12 patients selected from 53 presentations who had overt signs and symptoms of OP poisoning and who had not received atropine prior to arrival. All patients subsequently received specific management with atropine and/or pralidoxime and general supportive care. Tympanic temperature, ambient temperature, heart rate, and clinical examination and interventions were recorded prospectively throughout their hospitalization. Initial hypothermia as low as 32°C was observed in untreated patients. Tympanic temperature increased over time from an early hypothermia (<35°C in 6/12 patients) to later fever (7/12 patients >38°C at some later point). While some of the late high temperatures occurred in the setting of marked tachycardia, it was also apparent that in some cases fever was not accompanied by tachycardia, making excessive atropine or severe infection an unlikely explanation for all the fevers. In humans, OP poisoning causes an initial hypothermia, and this is followed by a period of normal to high body temperature. Atropine and respiratory complications may contribute to fever but do not account for all cases

    Fibroblast growth factor 21 reflects liver fat accumulation and dysregulation of signalling pathways in the liver of C57BL/6J mice

    Get PDF
    Fibroblast growth factor 21 (Fgf21) has emerged as a potential plasma marker to diagnose non-alcoholic fatty liver disease (NAFLD). To study the molecular processes underlying the association of plasma Fgf21 with NAFLD, we explored the liver transcriptome data of a mild NAFLD model of aging C57BL/6J mice at 12, 24, and 28 months of age. The plasma Fgf21 level significantly correlated with intrahepatic triglyceride content. At the molecular level, elevated plasma Fgf21 levels were associated with dysregulated metabolic and cancerrelated pathways. The up-regulated Fgf21 levels in NAFLD were implied to be a protective response against the NAFLD-induced adverse effects, e.g. lipotoxicity, oxidative stress and endoplasmic reticulum stress. An in vivo PPARα challenge demonstrated the dysregulation of PPARα signalling in the presence of NAFLD, which resulted in a stochastically increasing hepatic expression of Fgf21. Notably, elevated plasma Fgf21 was associated with declining expression of Klb, Fgf21’s crucial co-receptor, which suggests a resistance to Fgf21. Therefore, although liver fat accumulation is a benign stage of NAFLD, the elevated plasma Fgf21 likely indicated vulnerability to metabolic stressors that may contribute towards progression to end-stage NAFLD. In conclusion, plasma levels of Fgf21 reflect liver fat accumulation and dysregulation of metabolic pathways in the liver

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Mathematical model describing erythrocyte sedimentation rate. Implications for blood viscosity changes in traumatic shock and crush syndrome

    Get PDF
    BACKGROUND: The erythrocyte sedimentation rate (ESR) is a simple and inexpensive laboratory test, which is widespread in clinical practice, for assessing the inflammatory or acute response. This work addresses the theoretical and experimental investigation of sedimentation a single and multiple particles in homogeneous and heterogeneous (multiphase) medium, as it relates to their internal structure (aggregation of solid or deformed particles). METHODS: The equation system has been solved numerically. To choose finite analogs of derivatives we used the schemes of directional differences. RESULTS: (1) Our model takes into account the influence of the vessel wall on group aggregation of particles in tubes as well as the effects of rotation of particles, the constraint coefficient, and viscosity of a mixture as a function of the volume fraction. (2) This model can describe ESR as a function of the velocity of adhesion of erythrocytes; (3) Determination of the ESR is best conducted at certain time intervals, i.e. in a series of periods not exceeding 5 minutes each; (4) Differential diagnosis of various diseases by means of ESR should be performed using the aforementioned timed measurement of ESR; (5) An increase in blood viscosity during trauma results from an increase in rouleaux formation and the time-course method of ESR will be useful in patients with trauma, in particular, with traumatic shock and crush syndrome. CONCLUSION: The mathematical model created in this study used the most fundamental differential equations that have ever been derived to estimate ESR. It may further our understanding of its complex mechanism
    corecore