12 research outputs found

    THE DIVERSITY OF USEFUL BEETLES FROM THE POBORU ORCHARD ECOSYSTEM, OLT COUNTY

    Get PDF
    This paper presents data on the abundance and diversity of useful coleopteran species collected in the plum plantation in Poboru, Olt county. The research was carried out in 2022, starting from April to September.During the observation period, research was carried out on the entomofauna of useful coleoptera found in the Poboru orchard ecosystem. This was subjected to an analysis regarding the structure and abundance of useful coleopterans encountered in the studied fruit crop, and they were selected from the total of coleopterans identified and treated separately.Thus, in 2022, 8 species from the Carabidae family, 2 species from the Staphilinidae family and 10 species from the Coccinellidae family were identified.According to the data obtained in 2022, the Coccinellidae family represented 61.12%, the Carabidae family accounted for 28.75% and the Staphilinidae family 10.13%

    THE DIVERSITY OF COLEOPTERANS (COLEOPTERA: SCARABAEIDAE, SCOLYTIDAE, CURCULIONIDAE RHYNCHITIDAE) FROM THE PLUM ECOSYSTEMS IN POBORU LOCATION, OLT COUNTY

    Get PDF
    The present work is dedicated to the research of the current state of the fauna and the diversity of the coleoptera in the plum ecosystems in Poboru, Olt county.As a result of the investigations carried out in 2022, in the North-Eastern area of Olt county, the harmful coleoptera species collected in the analyzed orchard ecosystem were classified into 4 families: Scarabaeidae, Scolytidae, Curculionidae and Rhynchitidae. (P.Pasol, Ionela Dobrin , Loredana Frasin, , Treatise on special entomology, Pests of horticultural crops, 2007, page 209-220). Thus, in 2022, 11 species from the Scarabaeidae family, 3 species from the Scolytidae family, 5 species from the Curculionidae family and one species from the Rhynchitidae family were identified. According to the data obtained in 2022, the Scarabaeidae family represented 36.90%, the Scolytidae family was found in a proportion of 22.62%, the Curculionidae family 38.10%, and the Rhynchitidae family 2.38%

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions

    Search for Higgs and ZZ Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and ZZ bosons to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma (n=1,2,3n=1,2,3) is performed with pppp collision data samples corresponding to integrated luminosities of up to 20.3fb120.3\mathrm{fb}^{-1} collected at s=8TeV\sqrt{s}=8\mathrm{TeV} with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% CL upper limits are placed on the branching fractions. In the J/ψγJ/\psi\gamma final state the limits are 1.5×1031.5\times10^{-3} and 2.6×1062.6\times10^{-6} for the Higgs and ZZ bosons, respectively, while in the Υ(1S,2S,3S)γ\Upsilon(1S,2S,3S)\,\gamma final states the limits are (1.3,1.9,1.3)×103(1.3,1.9,1.3)\times10^{-3} and (3.4,6.5,5.4)×106(3.4,6.5,5.4)\times10^{-6}, respectively

    Search for Scalar-Charm pair production in pp collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    No full text
    The results of a dedicated search for pair production of scalar partners of charm quarks are reported. The search is based on an integrated luminosity of 20.3 fb1^{-1} of pp collisions at s=8\sqrt{s}=8 TeV recorded with the ATLAS detector at the LHC. The search is performed using events with large missing transverse momentum and at least two jets, where the two leading jets are each tagged as originating from c-quarks. Events containing isolated electrons or muons are vetoed. In an R-parity-conserving minimal supersymmetric scenario in which a single scalar-charm state is kinematically accessible, and where it decays exclusively into a charm quark and a neutralino, 95% confidence-level upper limits are obtained in the scalar-charm-neutralino mass plane such that, for neutralino masses below 200 GeV, scalar-charm masses up to 490 GeV are excluded

    Finska tingsdomares bedömningar av partsutlåtanden givna på plats i rätten eller via videokonferens

    Get PDF
    Professionals within the judicial system sometimes believe they can assess whether someone is lying or not based on cues such as body language and emotional expression. Research has, however, shown that this is impossible. The Finnish Supreme Court has also given rulings in accordance with this demonstrated fact. There has also been previous research on whether party or witness statements are assessed differently in court depending on whether they are given live, via videoconference, or via prerecorded video. In the present study, we investigated how a Finnish sample of district judges (N=47) assigned probative value to different variables concerning the statement or the statement giver, such as body language and emotional expression. We also investigated the connection between the judges’ beliefs about the relevance of body language and emotional expression and their preference for live statements or statements via videoconference. The judges reported assigning equal amounts of probative value to statements given live and statements given via videoconference. However, judges found it easier to detect deception live, and this preference correlated with how relevant they thought body language is when assessing the probative value of the statement. In other words, a slight bias to assess live statements more favorably than statements given via videoconference might still exist. More effort needs to be put into making judges and Supreme Courts aware of robust scientific results that have been the subject of decades of research, such as the fact that one cannot assess whether someone is lying or not based on cues such as body language
    corecore